Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11

被引:6
作者
Borodin, O. V. [1 ,2 ]
Ivanova, A. O. [3 ]
Kostochka, A. V. [1 ,4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Fed Univ, Yakutsk 677891, Russia
[4] Univ Illinois, Urbana, IL 61801 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Planar graph; Plane map; Structure properties; 3-polytope; Weight; LIGHT SUBGRAPHS; PLANE GRAPHS; CYCLES;
D O I
10.1016/j.disc.2013.10.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi(P)(C-6) (respectively, phi(T)(C-6)) be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has a 6-cycle with all vertices of degree at most k. In 1999, S. Jendrol' and T. Madaras proved that 10 <= phi(T)(C-6) <= 11. It is also known, due to B. Mohar, R. Skrekovski and H.-J. Voss (2003), that phi(P)(C-6) <= 107. We prove that phi(P)(C-6) = phi(T)(C-6) = 11. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:128 / 134
页数:7
相关论文
共 22 条
[21]  
Steinitz E., 1922, ENZYKL MATH WISS, V3-1-2, p#12
[22]   Concerning the cartographic four colour set. [J].
Wernicke, P .
MATHEMATISCHE ANNALEN, 1904, 58 :413-426