Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11

被引:6
作者
Borodin, O. V. [1 ,2 ]
Ivanova, A. O. [3 ]
Kostochka, A. V. [1 ,4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Fed Univ, Yakutsk 677891, Russia
[4] Univ Illinois, Urbana, IL 61801 USA
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
Planar graph; Plane map; Structure properties; 3-polytope; Weight; LIGHT SUBGRAPHS; PLANE GRAPHS; CYCLES;
D O I
10.1016/j.disc.2013.10.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi(P)(C-6) (respectively, phi(T)(C-6)) be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has a 6-cycle with all vertices of degree at most k. In 1999, S. Jendrol' and T. Madaras proved that 10 <= phi(T)(C-6) <= 11. It is also known, due to B. Mohar, R. Skrekovski and H.-J. Voss (2003), that phi(P)(C-6) <= 107. We prove that phi(P)(C-6) = phi(T)(C-6) = 11. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:128 / 134
页数:7
相关论文
共 22 条
[1]  
BORODIN O, 1992, MATH NACHR, V158, P109
[2]   Colorings of plane graphs: A survey [J].
Borodin, O. V. .
DISCRETE MATHEMATICS, 2013, 313 (04) :517-539
[3]  
Borodin O.V., 1998, DISCUSS MATH GRAPH T, V18, P159, DOI DOI 10.7151/DMGT.1071
[5]  
Borodin OV, 1996, J GRAPH THEOR, V23, P233, DOI 10.1002/(SICI)1097-0118(199611)23:3<233::AID-JGT3>3.0.CO
[6]  
2-T
[7]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[8]   Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight [J].
Ferencova, Barbora ;
Madaras, Tomas .
DISCRETE MATHEMATICS, 2010, 310 (12) :1661-1675
[9]   The four color problem [J].
Franklin, P .
AMERICAN JOURNAL OF MATHEMATICS, 1922, 44 :225-236
[10]  
Grunbaum B., 1975, MATH ASS AM STUDIES, V12, P201