FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression

被引:92
作者
Yu, T. [1 ]
Hu, Y. M. [2 ,3 ]
Teng, J. G. [2 ]
机构
[1] Univ Wollongong, Fac Engn & Informat Sci, Sch Civil Min & Environm Engn, Wollongong, NSW 2522, Australia
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
[3] AECOM Asia Co Ltd, Hong Kong, Hong Kong, Peoples R China
关键词
Concrete-filled steel tubes; FRP; Confinement; Strengthening; Cyclic axial compression; STRESS-STRAIN MODEL; BEHAVIOR; TUBES;
D O I
10.1016/j.jcsr.2013.11.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete-filled steel tubes (CFTs) are widely used as columns in many structural systems. In CFTs, inward buckling deformations of the steel tube are prevented by the concrete core, but degradation in steel confinement, strength and ductility can still result from outward local buckling. To overcome this deficiency of CFTs, CFTs can be confined with fibre-reinforced polymer (FRP) wraps to suppress outward local buckling deformations. This paper is concerned with the behaviour and modelling of FRP-confined concrete-filled steel tubular columns subjected to cyclic axial compression. Results from two series of cyclic axial compression tests on CCFTs are presented and discussed. A cyclic stress-strain model for confined concrete in CCFTs is also proposed and is shown to compare well with the test results. The proposed stress-strain model can be employed in the modelling of CCFTs under seismic loadings in future studies. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 50 条
  • [31] Behavior of Concrete-Filled FRP Tubes under Cyclic Axial Compression
    Zhang, B.
    Yu, T.
    Teng, J. G.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (03)
  • [32] Cyclic axial compression tests on concrete-filled elliptical steel tubular stub columns
    Xu Y.
    Yao J.
    Li Z.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (05): : 635 - 642
  • [33] Comparative study of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading
    Ding, Fa-xing
    Zhu, Jiang
    Cheng, ShanShan
    Liu, Xuemei
    THIN-WALLED STRUCTURES, 2018, 123 : 294 - 304
  • [34] Responses of concrete-filled FRP tubular and concrete-filled FRP-steel double skin tubular columns under horizontal impact
    Chen, Zhilin
    Wang, Jun
    Chen, Jiye
    GangaRao, Hota
    Liang, Ruifeng
    Liu, Weiqing
    THIN-WALLED STRUCTURES, 2020, 155
  • [35] Nonlinear analysis of elliptical concrete-filled stainless steel tubular short columns under axial compression
    Ahmed, Mizan
    Ci, Junchang
    Yan, Xi-Feng
    Chen, Shicai
    STRUCTURES, 2021, 32 : 1374 - 1385
  • [36] Axial-flexural interaction in circular FRP-confined reinforced concrete columns
    Bisby, Luke
    Ranger, Michael
    CONSTRUCTION AND BUILDING MATERIALS, 2010, 24 (09) : 1672 - 1681
  • [37] Behavior of FRP-confined high-strength concrete under eccentric compression: Tests on concrete-filled FRP tube columns
    Pour, Ali Fallah
    Gholampour, Aliakbar
    Zhen, Junai
    Ozbakkaloglu, Togay
    COMPOSITE STRUCTURES, 2019, 220 : 261 - 272
  • [38] Confinement path-dependent analytical model for FRP-confined concrete and concrete-filled steel tube subjected to axial compression
    Chen, Peng
    Wang, Yuyin
    Liu, Changyong
    COMPOSITE STRUCTURES, 2018, 201 : 234 - 247
  • [39] Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading
    Liang, Qing Quan
    Fragomeni, Sam
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2009, 65 (12) : 2186 - 2196
  • [40] Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression
    Hassanein, M. F.
    Kharoob, O. F.
    Liang, Q. Q.
    THIN-WALLED STRUCTURES, 2013, 73 : 252 - 263