FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression

被引:92
|
作者
Yu, T. [1 ]
Hu, Y. M. [2 ,3 ]
Teng, J. G. [2 ]
机构
[1] Univ Wollongong, Fac Engn & Informat Sci, Sch Civil Min & Environm Engn, Wollongong, NSW 2522, Australia
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
[3] AECOM Asia Co Ltd, Hong Kong, Hong Kong, Peoples R China
关键词
Concrete-filled steel tubes; FRP; Confinement; Strengthening; Cyclic axial compression; STRESS-STRAIN MODEL; BEHAVIOR; TUBES;
D O I
10.1016/j.jcsr.2013.11.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete-filled steel tubes (CFTs) are widely used as columns in many structural systems. In CFTs, inward buckling deformations of the steel tube are prevented by the concrete core, but degradation in steel confinement, strength and ductility can still result from outward local buckling. To overcome this deficiency of CFTs, CFTs can be confined with fibre-reinforced polymer (FRP) wraps to suppress outward local buckling deformations. This paper is concerned with the behaviour and modelling of FRP-confined concrete-filled steel tubular columns subjected to cyclic axial compression. Results from two series of cyclic axial compression tests on CCFTs are presented and discussed. A cyclic stress-strain model for confined concrete in CCFTs is also proposed and is shown to compare well with the test results. The proposed stress-strain model can be employed in the modelling of CCFTs under seismic loadings in future studies. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 50 条
  • [21] STRAIN EFFICIENCY OF FRP JACKETS IN FRP-CONFINED CONCRETE-FILLED CIRCULAR STEEL TUBES
    Li, S. Q.
    Chen, J. F.
    Bisby, L. A.
    Hu, Y. M.
    Teng, J. G.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2012, 12 (01) : 75 - 94
  • [22] Axial bearing capacity of short FRP confined concrete-filled steel tubular columns
    Lan Liu
    Yiyan Lu
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25 : 454 - 458
  • [24] Experimental investigation of FRP-confined HSC-filled steel tube stub columns under axial compression
    Ma, Yudong
    Ma, Kaize
    Han, Xiao
    Yao, Tian
    ENGINEERING STRUCTURES, 2023, 280
  • [25] Damage model for FRP-confined concrete columns under cyclic loading
    Desprez, C.
    Mazars, J.
    Kotronis, P.
    Paultre, P.
    ENGINEERING STRUCTURES, 2013, 48 : 519 - 531
  • [26] Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression
    Wang, Jun
    Liu, Weiqing
    Zhou, Ding
    Zhu, Lu
    Fang, Hai
    STEEL AND COMPOSITE STRUCTURES, 2014, 17 (04) : 431 - 452
  • [27] Size effect of circular concrete-filled steel tubular short columns subjected to axial compression
    Wang, Yuyin
    Chen, Peng
    Liu, Changyong
    Zhang, Ying
    THIN-WALLED STRUCTURES, 2017, 120 : 397 - 407
  • [28] Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression
    Liang, Qing Quan
    ENGINEERING STRUCTURES, 2017, 131 : 639 - 650
  • [29] Stress-strain model of an FRP-confined concrete filled steel tube under axial compression
    Zhang, Yirui
    Wei, Yang
    Bai, Jiawen
    Zhang, Yongxing
    THIN-WALLED STRUCTURES, 2019, 142 : 149 - 159
  • [30] Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression
    Feng, Peng
    Cheng, Shi
    Bai, Yu
    Ye, Lieping
    COMPOSITE STRUCTURES, 2015, 123 : 312 - 324