Boundary layer analysis for a 2-D Keller-Segel model

被引:0
作者
Meng, Linlin [1 ]
Xu, Wen-Qing [2 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Dept Appl Math, Beijing 100124, Peoples R China
[2] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
来源
OPEN MATHEMATICS | 2020年 / 18卷
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Keller-Segel model; boundary layer phenomenon; matched asymptotic expansions; energy estimates; NAVIER-STOKES EQUATIONS; QUASI-NEUTRAL LIMIT; PARABOLIC CHEMOTAXIS SYSTEM; ZERO-VISCOSITY LIMIT; DECAYING DIFFUSIVITY; CONSUMPTION; BOUNDEDNESS; CONVERGENCE; STABILITY; FLUID;
D O I
10.1515/math-2020-0093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
引用
收藏
页码:1895 / 1914
页数:20
相关论文
共 50 条
  • [21] Convergence to diffusion waves for solutions of 1D Keller-Segel model
    Liu, Fengling
    Zhang, Nangao
    Zhu, Changjiang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3674 - 3702
  • [22] LARGE TIME BEHAVIOR IN THE LOGISTIC KELLER-SEGEL MODEL VIA MAXIMAL SOBOLEV REGULARITY
    Cao, Xinru
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3369 - 3378
  • [23] TRAVELING BANDS FOR THE KELLER-SEGEL MODEL WITH POPULATION GROWTH
    Ai, Shangbing
    Wang, Zhian
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (04) : 717 - 737
  • [24] Threshold for shock formation in the hyperbolic Keller-Segel model
    Lee, Yongki
    Liu, Hailiang
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 50 : 56 - 63
  • [25] Existence of multi-spikes in the Keller-Segel model with logistic growth
    Kong, Fanze
    Wei, Juncheng
    Xu, Liangshun
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (11) : 2227 - 2270
  • [26] Study of the Stability and convergence of an implicit finite volume method for an spatial fractional Keller-Segel model
    Messikh, Chahrazed
    [J]. PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MATHEMATICS AND INFORMATION TECHNOLOGY (ICMIT), 2017, : 325 - 329
  • [27] Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model
    Xingjie Helen Li
    Chi-Wang Shu
    Yang Yang
    [J]. Journal of Scientific Computing, 2017, 73 : 943 - 967
  • [28] A study of blow-ups in the Keller-Segel model of chemotaxis
    Fatkullin, Ibrahim
    [J]. NONLINEARITY, 2013, 26 (01) : 81 - 94
  • [29] ON THE PSEUDO-MEASURE SOLVABILITY TO THE KELLER-SEGEL MODEL FOR CHEMOTAXIS
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [30] Spectral stability of travelling wave solutions in a Keller-Segel model
    Davis, P. N.
    van Heijster, P.
    Marangell, R.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 141 : 54 - 61