Boundary layer analysis for a 2-D Keller-Segel model

被引:0
|
作者
Meng, Linlin [1 ]
Xu, Wen-Qing [2 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Dept Appl Math, Beijing 100124, Peoples R China
[2] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
来源
OPEN MATHEMATICS | 2020年 / 18卷
基金
北京市自然科学基金; 美国国家科学基金会;
关键词
Keller-Segel model; boundary layer phenomenon; matched asymptotic expansions; energy estimates; NAVIER-STOKES EQUATIONS; QUASI-NEUTRAL LIMIT; PARABOLIC CHEMOTAXIS SYSTEM; ZERO-VISCOSITY LIMIT; DECAYING DIFFUSIVITY; CONSUMPTION; BOUNDEDNESS; CONVERGENCE; STABILITY; FLUID;
D O I
10.1515/math-2020-0093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
引用
收藏
页码:1895 / 1914
页数:20
相关论文
共 50 条
  • [1] On the vanishing viscosity limit for a 3-D system arising from the Keller-Segel model
    Meng, Linlin
    Xu, Wen-Qing
    Wang, Shu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 920 - 938
  • [2] The 2-D stochastic Keller-Segel particle model: existence and uniqueness
    Cattiaux, Patrick
    Pedeches, Laure
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (01): : 447 - 463
  • [3] BOUNDARY LAYER ANALYSIS FROM THE KELLER-SEGEL SYSTEM TO THE AGGREGATION SYSTEM IN ONE SPACE DIMENSION
    Che, Jiahang
    Chen, Li
    Goettlich, Simone
    Pandey, Anamika
    Wang, Jing
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) : 1013 - 1036
  • [4] The stability of the Keller-Segel model
    Solis, FJ
    Cortés, JC
    Cardenas, OJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 973 - 979
  • [5] Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model
    Jin, Hai-Yang
    Xiang, Tian
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (08) : 875 - 885
  • [6] Chemotactic collapse for the Keller-Segel model
    Herrero, MA
    Velazquez, JJL
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) : 177 - 194
  • [7] Instability in a generalized Keller-Segel model
    De Leenheer, Patrick
    Gopalakrishnan, Jay
    Zuhr, Erica
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 974 - 991
  • [8] BOUNDARY LAYERS AND STABILIZATION OF THE SINGULAR KELLER-SEGEL SYSTEM
    Peng, Hongyun
    Wang, Zhi-An
    Zhao, Kun
    Zhu, Changjiang
    KINETIC AND RELATED MODELS, 2018, 11 (05) : 1085 - 1123
  • [9] TRAVELING WAVES IN A KELLER-SEGEL MODEL WITH LOGISTIC GROWTH
    Li, Tong
    Park, Jeungeun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (03) : 829 - 853
  • [10] ON BLOWUP DYNAMICS IN THE KELLER-SEGEL MODEL OF CHEMOTAXIS
    Dejak, S. I.
    Egli, D.
    Lushnikov, P. M.
    Sigal, I. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (04) : 547 - 574