Monotonicity of the cd-index for polytopes

被引:27
作者
Billera, LJ
Ehrenborg, R
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
D O I
10.1007/s002090050480
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the cd-index of a convex polytope satisfies a strong monotonicity property with respect to the cd-indices of any face and its link. As a consequence, we prove for d-dimensional polytopes a conjecture of Stanley that the cd-index is minimized on the d-dimensional simplex. Moreover, we prove the upper bound theorem for the cd-index, namely that the cd-index of any d-dimensional polytope with n vertices is at most that of C(n, d), the d-dimensional cyclic polytope with n vertices.
引用
收藏
页码:421 / 441
页数:21
相关论文
共 32 条
[1]   THE EXTENDED F-VECTORS OF 4-POLYTOPES [J].
BAYER, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 44 (01) :141-151
[2]  
Bayer MargaretM., 1984, COMBINATORICS ALGEBR, V34, P207
[3]   GENERALIZED DEHN-SOMMERVILLE RELATIONS FOR POLYTOPES, SPHERES AND EULERIAN PARTIALLY ORDERED SETS [J].
BAYER, MM ;
BILLERA, LJ .
INVENTIONES MATHEMATICAE, 1985, 79 (01) :143-157
[4]   A NEW INDEX FOR POLYTOPES [J].
BAYER, MM ;
KLAPPER, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (01) :33-47
[5]  
BAYER MM, 1993, HDB CONVEX GEOMETRY, VA, P485
[6]  
BAYER MM, IN PRESS T AM MATH S
[7]  
Billera L. J., 1998, MATH ESSAYS HONOR GI, P23
[8]   A PROOF OF THE SUFFICIENCY OF MCMULLEN CONDITIONS FOR F-VECTORS OF SIMPLICIAL CONVEX POLYTOPES [J].
BILLERA, LJ ;
LEE, CW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 31 (03) :237-255
[9]   The c-2d-index of oriented matroids [J].
Billera, LJ ;
Ehrenborg, R ;
Readdy, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (01) :79-105
[10]  
BILLERA LJ, IN PRESS J ALGEBRAIC