Transforming Damage into Benefit: Corrosion Engineering Enabled Electrocatalysts for Water Splitting

被引:115
|
作者
Liu, Xupo [1 ,2 ]
Gong, Mingxing [1 ]
Deng, Shaofeng [1 ]
Zhao, Tonghui [1 ]
Shen, Tao [1 ]
Zhang, Jian [1 ]
Wang, Deli [1 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Hubei Key Lab Mat Chem & Serv Failure, Minist Educ,Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[2] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
关键词
corrosion engineering; electrocatalyst; scale‐ up production; structure– activity relation; water splitting; LAYERED DOUBLE HYDROXIDE; HYDROGEN EVOLUTION REACTION; ONE-STEP SYNTHESIS; OXYGEN EVOLUTION; STAINLESS-STEEL; HIGHLY-EFFICIENT; NICKEL FOAM; NI(OH)(2) NANOSHEETS; BIFUNCTIONAL ELECTROCATALYST; ELECTRONIC-STRUCTURE;
D O I
10.1002/adfm.202009032
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Producing high-purity hydrogen from water electrocatalysis is essential for the flourishing hydrogen energy economy. It is of critical importance to develop low-cost yet efficient electrocatalysts to overcome the high activation barriers during water electrocatalysis. Among the various approaches of catalyst preparation, corrosion engineering that employs the autogenous corrosion reactions to achieve electrocatalysts has emerged as a burgeoning strategy over the past few years. Benefiting from the advantages of simple synthesis, effective regulation, easy scale-up production, and extremely low cost, corrosion engineering converts the harmful corrosion process into the useful catalyst preparation, achieving the goal of "transforming damage into benefit." Herein, the concept of corrosion engineering, fundamental reaction mechanisms, and affecting factors are firstly introduced. Then, recent progresses on corrosion engineering for fabricating electrocatalysts toward water splitting are summarized and discussed. Specific attentions are devoted to the formation mechanisms, catalytic performances, and structure-activity relations of these catalysts as well as the approaches employed for performance improvements. At last, the current challenges and future exploiting directions are proposed for achieving highly active and durable electrocatalysts. It is envisioned to shed light on the multidisciplinary corrosion engineering that is closely associated with corrosion and material science for energy and environmental applications.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] A Minireview on Nickel-Based Heterogeneous Electrocatalysts for Water Splitting
    Li, Yuting
    Bao, Xinghong
    Chen, Daisong
    Wang, Zhigang
    Dewangan, Nikita
    Li, Mengqiu
    Xu, Ze
    Wang, Juan
    Kawi, Sibudjing
    Zhong, Qin
    CHEMCATCHEM, 2019, 11 (24) : 5913 - 5928
  • [2] Advances in CoP electrocatalysts for water splitting
    Li, Z.
    Feng, H.
    Song, M.
    He, C.
    Zhuang, W.
    Tian, L.
    MATERIALS TODAY ENERGY, 2021, 20
  • [3] Activity engineering to transition metal phosphides as bifunctional electrocatalysts for efficient water-splitting
    Chu, Yuan
    Wang, Dan
    Shan, Xueling
    Liu, Changhai
    Wang, Wenchang
    Mitsuzaki, Naotoshi
    Chen, Zhidong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (92) : 38983 - 39000
  • [4] Dimension Engineering in Noble-Metal-Based Electrocatalysts for Water Splitting
    Yang, Xin
    Ouyang, Yuejun
    Guo, Ruike
    Yao, Zufu
    CHEMICAL RECORD, 2023, 23 (02)
  • [5] Morphological and Interfacial Engineering of Cobalt-Based Electrocatalysts by Carbon Dots for Enhanced Water Splitting
    Feng, Tanglue
    Zeng, Qingsen
    Lu, Siyu
    Yang, Mingxi
    Tao, Songyuan
    Chen, Yixin
    Zhao, Yue
    Yang, Bai
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (07) : 7047 - +
  • [6] Bifunctional Electrocatalysts Based on Mo-Doped NiCoP Nanosheet Arrays for Overall Water Splitting
    Lin, Jinghuang
    Yan, Yaotian
    Li, Chun
    Si, Xiaoqing
    Wang, Haohan
    Qi, Junlei
    Cao, Jian
    Zhong, Zhengxiang
    Fei, Weidong
    Feng, Jicai
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [7] Rhenium-Based Electrocatalysts for Water Splitting
    Ramirez, Andres M. R.
    Heidari, Sima
    Vergara, Ana
    Aguilera, Miguel Villicana
    Preuss, Paulo
    Camarada, Maria B.
    Fischer, Anna
    ACS MATERIALS AU, 2023, 3 (03): : 177 - 200
  • [8] Self-supported hollow Co(OH)2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting
    Wu, Fang
    Guo, Xiaoxue
    Hao, Gazi
    Hu, Yubing
    Jiang, Wei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (09) : 2627 - 2637
  • [9] Solid-State Conversion Synthesis of Advanced Electrocatalysts for Water Splitting
    Ma, Xiaomin
    Shi, Yanmei
    Wang, Kang
    Yu, Yifu
    Zhang, Bin
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (18) : 3961 - 3972
  • [10] Electronic Structure Engineering of Transition-Metal-based Electrocatalysts for Water Splitting
    Sun, Mingwei
    Zhang, Ning
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (43): : 15788 - 15811