logistic regression;
maximum likelihood;
EM algorithm;
missing covariates;
missing data;
semiparametric efficiency;
D O I:
10.1111/1467-9574.t01-1-00059
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
ML-estimation of regression parameters with incomplete covariate information usually requires a distributional assumption regarding the concerned covariates that implies a source of misspecification. Semiparametric procedures avoid such assumptions at the expense of efficiency. In this paper a simulation study with small sample size is carried out to get an idea of the performance of the ML-estimator under misspecification and to compare it with the semiparametric procedures when the former is based on a correct assumption. The results show that there is only a little gain by correct parametric assumptions, which does not justify the possibly large bias when the assumptions are not met. Additionally, a simple modification of the complete case estimator appears to be nearly semiparametric efficient.
机构:
Univ London London Sch Hyg & Trop Med, Med Stat Unit, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Med Stat Unit, London WC1E 7HT, England
Bartlett, Jonathan W.
De Stavola, Bianca L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Med Stat Unit, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Med Stat Unit, London WC1E 7HT, England
De Stavola, Bianca L.
Frost, Chris
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Med Stat Unit, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Med Stat Unit, London WC1E 7HT, England