MOMENTS OF TRACES OF CIRCULAR BETA-ENSEMBLES

被引:19
作者
Jiang, Tiefeng [1 ]
Matsumoto, Sho [2 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
Random matrix; circular beta-ensemble; moment; Jack function; partition; Haar-invariance; central limit theorem; STATISTICAL-THEORY; ENERGY-LEVELS; EIGENVALUES; MATRICES; ENTRIES;
D O I
10.1214/14-AOP960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let theta(1) ,..., theta(n) be random variables from Dyson's circular beta-ensemble with probability density function Const. Pi(1 <= j<k <= n) vertical bar e(i theta j) - e(i theta k)vertical bar(beta). For each n >= 2 and beta > 0, we obtain some inequalities on E[p(mu)(Z(n))<(P-v(Z(n)))over bar>], where Z(n) = (e(i theta 1) ,..., e(i theta n)) and p(mu) is the power-sum symmetric function for partition mu. When beta = 2, our inequalities recover an identity by Diaconis and Evans for Haar-invariant unitary matrices. Further, we have the following: lim(n ->infinity) E[p(mu)(Z(n))<(P-v(Z(n)))over bar>] = delta(mu v)(2/beta)(l(mu))z(mu) for any beta > 0 and partitions mu, v; lim(m ->infinity) E[vertical bar p(m)(Z(n))vertical bar(2)] = n for any beta > 0 and n >= 2, where l(mu) is the length of mu and z(mu) is explicit on mu. These results apply to the three important ensembles: COE (beta = 1), COE (beta = 2) and CSE (beta = 4). We further examine the nonasymptotic behavior of E[vertical bar p(m)(Z(n))vertical bar(2)] for beta = 1, 4. The central limit theorems of Sigma(n)(j=1) g(e(i theta j)) are obtained when (i) g(z) is a polynomial and beta > 0 is arbitrary, or (ii) g (z) has a Fourier expansion and beta = 1, 4. The main tool is the Jack function.
引用
收藏
页码:3279 / 3336
页数:58
相关论文
共 25 条
[1]  
[Anonymous], 1988, Inequalities
[2]  
Blower G., 2009, LONDON MATH SOC LECT, V367
[3]  
Collins B, 2003, INT MATH RES NOTICES, V2003, P953
[4]   On some properties of orthogonal Weingarten functions [J].
Collins, Benoit ;
Matsumoto, Sho .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
[5]   ON THE EIGENVALUES OF RANDOM MATRICES [J].
DIACONIS, P ;
SHAHSHAHANI, M .
JOURNAL OF APPLIED PROBABILITY, 1994, 31A :49-62
[6]   Linear functionals of eigenvalues of random matrices [J].
Diaconis, P ;
Evans, SN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) :2615-2633
[7]   Circular law and arc law for truncation of random unitary matrix [J].
Dong, Zhishan ;
Jiang, Tiefeng ;
Li, Danning .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
[8]  
Durrett R., 2010, Probability: Theory and Examples, DOI 10.1017/CBO9780511779398
[9]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773