Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology

被引:62
作者
Davarnejad, Reza [1 ]
Panahi, Parisa [1 ]
机构
[1] Arak Univ, Fac Engn, Dept Chem Engn, Arak 3815688349, Iran
关键词
Adsorbent; Henna; Fe3O4; RSM; Wastewater; METAL-IONS; BIOSORPTION; PB(II); COPPER(II); CADMIUM; BIOMASS; NI(II); CU(II); OPTIMIZATION; EQUILIBRIUM;
D O I
10.1016/j.seppur.2015.12.018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this research, the capability of modified Henna with Fe3O4 nanoparticles adsorbent was studied in order to remove the ion Cu (II). Response surface method and central composite design were used to minimize number of experiments (21 runs) and optimize the effective parameters. The parameters were pH (2-6), initial solution concentration (10-100 mg/l), adsorbent dosage (0.1-1 g), and process time (20-150 min). It was concluded that Cu (II) removal increased from 0.73% to 99.11% by increasing the pH from 2 to 5.2 (maximum adsorption was at pH 5.2). The removal was decreased up to 66% by the initial solution concentration enhancement (10-100 mg/l). Furthermore, the removal was increased from 41.65% to 97.05% by the augmentation of the amount of adsorbent dosage (from 0.1 to 1 g). A perfect correlation (with R-2 = 0.9986) between the statistical model and experiment was found for Cu (II) removal from aqueous wastewater using the adsorbent. The Langmuir and Freundlich isotherm models were also applied as adsorption mechanism. A good agreement (with R-2 = 1) between the Langmuir model and experimental data was investigated however Freundlich model confirmed that the modified Henna is a proper adsorbent in Cu (II) adsorption process. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:286 / 292
页数:7
相关论文
共 50 条
  • [41] Application of the Response Surface Methodology in the Removal of Cu2+ and Pb2+ from Aqueous Solutions Using Orange Peels
    Afolabi, Felicia Omolara
    Musonge, Paul
    Bakare, Babatunde Femi
    SCIENTIFIC AFRICAN, 2021, 13
  • [42] Structural, morphological, magnetic and adsorption properties of Fe3O4 for copper removal from aqueous solution
    Sulaiman, Syazana
    Azis, Raba'ah Syahidah
    Ismail, Ismayadi
    Shaari, Abdul Halim
    Man, Haslina Che
    Nazri, Nur Asyikin Ahmad
    Azuan, Ayuni
    DESALINATION AND WATER TREATMENT, 2021, 215 : 136 - 146
  • [43] Removal of heavy metals from aqueous solution using Fe3O4 nanoparticles coated with Schiff base ligand
    Moradinasab, Sheida
    Behzad, Mahdi
    DESALINATION AND WATER TREATMENT, 2016, 57 (09) : 4028 - 4036
  • [44] Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: Optimization using response surface methodology
    Fakhri, Ali
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2015, 93 : 1 - 8
  • [45] Efficient removal of Pb(II)/Cu(II) from aqueous samples by a guanidine-functionalized SBA-15/Fe3O4
    Hassanzadeh-Afruzi, Fereshte
    Esmailzadeh, Farhad
    Asgharnasl, Somayeh
    Ganjali, Fatemeh
    Taheri-Ledari, Reza
    Maleki, Ali
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 291
  • [46] Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution
    Panneerselvam, P.
    Morad, Norhashimah
    Tan, Kah Aik
    JOURNAL OF HAZARDOUS MATERIALS, 2011, 186 (01) : 160 - 168
  • [47] Synthesis and optimization of the sonochemical method for functionalizing gold shell on Fe3O4 core nanoparticles using response surface methodology
    Dheyab, Mohammed Ali
    Aziz, Azlan Abdul
    Jameel, Mahmood S.
    SURFACES AND INTERFACES, 2020, 21
  • [48] Facile synthesis and characterization of Fe3O4/analcime nanocomposite for the efficient removal of Cu(II) and Cd(II) ions from aqueous media
    Algethami, Faisal K.
    Al-Wasidi, Asma S.
    Al-Farraj, Eida S.
    Katouah, Hanadi A.
    Abdelrahman, Ehab A.
    DISCOVER NANO, 2023, 18 (01)
  • [49] High accuracy prediction of Cu(II) cations removal from synthetic aqueous solutions with ANNs using normal and modified biosorbent
    Oguz, Ensar
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2024, 104 (16) : 4506 - 4521
  • [50] A novel and biocompatible Fe3O4 loaded chitosan polyelectrolyte nanoparticles for the removal of Cd2+ ion
    Zhang, Hongcai
    Tan, Xiao
    Qiu, Tingting
    Zhou, Lisha
    Li, Ruonan
    Deng, Zilong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 141 : 1165 - 1174