Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology

被引:62
|
作者
Davarnejad, Reza [1 ]
Panahi, Parisa [1 ]
机构
[1] Arak Univ, Fac Engn, Dept Chem Engn, Arak 3815688349, Iran
关键词
Adsorbent; Henna; Fe3O4; RSM; Wastewater; METAL-IONS; BIOSORPTION; PB(II); COPPER(II); CADMIUM; BIOMASS; NI(II); CU(II); OPTIMIZATION; EQUILIBRIUM;
D O I
10.1016/j.seppur.2015.12.018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this research, the capability of modified Henna with Fe3O4 nanoparticles adsorbent was studied in order to remove the ion Cu (II). Response surface method and central composite design were used to minimize number of experiments (21 runs) and optimize the effective parameters. The parameters were pH (2-6), initial solution concentration (10-100 mg/l), adsorbent dosage (0.1-1 g), and process time (20-150 min). It was concluded that Cu (II) removal increased from 0.73% to 99.11% by increasing the pH from 2 to 5.2 (maximum adsorption was at pH 5.2). The removal was decreased up to 66% by the initial solution concentration enhancement (10-100 mg/l). Furthermore, the removal was increased from 41.65% to 97.05% by the augmentation of the amount of adsorbent dosage (from 0.1 to 1 g). A perfect correlation (with R-2 = 0.9986) between the statistical model and experiment was found for Cu (II) removal from aqueous wastewater using the adsorbent. The Langmuir and Freundlich isotherm models were also applied as adsorption mechanism. A good agreement (with R-2 = 1) between the Langmuir model and experimental data was investigated however Freundlich model confirmed that the modified Henna is a proper adsorbent in Cu (II) adsorption process. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:286 / 292
页数:7
相关论文
共 50 条
  • [1] Cu(II) and Ni(II) removal from aqueous solutions by adsorption on Henna and optimization of effective parameters by using the response surface methodology
    Davarnejad, Reza
    Panahi, Parisa
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 33 : 270 - 275
  • [2] Cd (II) Removal from Aqueous Solutions by Adsorption on Henna and Henna with Chitosan Microparticles Using Response Surface Methodology
    Davarnejad, Reza
    Dastnayi, Karimi Zahra
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2019, 38 (03): : 267 - 281
  • [3] Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles
    Ozmen, Mustafa
    Can, Keziban
    Arslan, Gulsin
    Tor, Ali
    Cengeloglu, Yunus
    Ersoz, Mustafa
    DESALINATION, 2010, 254 (1-3) : 162 - 169
  • [4] Response surface methodology for adsorption of propylparaben using zeolitic imidazolate-67 modified by Fe3O4 nanoparticles from aqueous solutions
    Pourmohammad, Mohammad
    Ghadi, Arezoo
    Beni, Ali Aghababai
    DESALINATION AND WATER TREATMENT, 2023, 304 : 169 - 180
  • [5] Response surface methodology for the optimization of lanthanum removal from an aqueous solution using a Fe3O4/chitosan nanocomposite
    Haldorai, Yuvaraj
    Rengaraj, Arunkumar
    Ryu, Taegong
    Shin, Junho
    Huh, Yun Suk
    Han, Young-Kyu
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 195 : 20 - 29
  • [6] Synthesis, characterization, and application of polypyrrole/Fe3O4 nanocomposite for removal of Ni(II) ions from water and wastewaters
    Ansari, R.
    Esdaki, Z.
    Ostovar, F.
    POLYMER BULLETIN, 2023, 80 (09) : 9451 - 9464
  • [7] Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology
    Ahmadi, Ali
    Heidarzadeh, Shahriar
    Mokhtari, Ahmad Reza
    Darezereshki, Esmaeil
    Harouni, Houshang Asadi
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2014, 147 : 151 - 158
  • [8] Response Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution Using MWCNT-Fe3O4 Nanocomposite
    Goleij, Milad
    Fakhraee, Hossein
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2017, 36 (05): : 129 - 141
  • [9] Methylene Blue Adsorption by Fe3O4 Nanoparticles: An Optimization Study Using Response Surface Methodology
    Gritli, Imene
    Chemingui, Hajer
    Djebali, Kais
    Mabrouk, Walid
    Hafiane, Amor
    Marzouki, Riadh
    Ammar, Salah
    Chtourou, Radhouane
    Keshk, Sherif M. A. S.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2024, 47 (10)
  • [10] Magnetic Fe3O4 Nanoparticles Modified With Polyethyleneimine for the Removal of Pb(II)
    Jiang, Hongmei
    Sun, Menglan
    Xu, Jiangyan
    Lu, Aimin
    Shi, Ying
    CLEAN-SOIL AIR WATER, 2016, 44 (09) : 1146 - 1153