Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity

被引:404
作者
Yang, Qian
Inoki, Ken
Ikenoue, Tsuneo
Guan, Kun-Liang [1 ]
机构
[1] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Inst Gerontol, Ann Arbor, MI 48109 USA
关键词
Sin1; TORC; TSC; rictor; Akt; mTOR;
D O I
10.1101/gad.1461206
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Target of rapamycin (TOR) is an evolutionally conserved protein kinase in eukaryotes and a central cell growth controller. TOR exists in two distinct complexes, termed TORC1 and TORC2. Mammalian TORC2 has recently been shown to possess kinase activity toward the C-terminal hydrophobic site of Akt/PKB. Here, we report that Sin1 is an essential component of TORC2 but not of TORC1, and functions similarly to Rictor, the defining member of TORC2, in complex formation and kinase activity. Knockdown of Sin1decreases Akt phosphorylation in both Drosophila and mammalian cells and diminishes Akt function in vivo. It also disrupts the interaction between Rictor and mTOR. Furthermore, Sin1 is required for TORC2 kinase activity in vitro. Disruption of the Rictor gene in mice results in embryonic lethality and ablates Akt phosphorylation. These data demonstrate that Sin1 together with Rictor are key components of mTORC2 and play an essential role in Akt phosphorylation and signaling.
引用
收藏
页码:2820 / 2832
页数:13
相关论文
共 40 条
  • [1] Immunopharmacology of rapamycin
    Abraham, RT
    Wiederrecht, GJ
    [J]. ANNUAL REVIEW OF IMMUNOLOGY, 1996, 14 : 483 - 510
  • [2] Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha
    Alessi, DR
    James, SR
    Downes, CP
    Holmes, AB
    Gaffney, PRJ
    Reese, CB
    Cohen, P
    [J]. CURRENT BIOLOGY, 1997, 7 (04) : 261 - 269
  • [3] Molecular basis for the substrate specificity of protein kinase B; Comparison with MAPKAP kinase-1 and p70 S6 kinase
    Alessi, DR
    Caudwell, FB
    Andjelkovic, M
    Hemmings, BA
    Cohen, P
    [J]. FEBS LETTERS, 1996, 399 (03) : 333 - 338
  • [4] PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2
    Balendran, A
    Casamayor, A
    Deak, M
    Paterson, A
    Gaffney, P
    Currie, R
    Downes, CP
    Alessi, DR
    [J]. CURRENT BIOLOGY, 1999, 9 (08) : 393 - 404
  • [5] Advances in protein kinase B signalling:: AKTion on multiple fronts
    Brazil, DP
    Yang, ZZ
    Hemmings, BA
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (05) : 233 - 242
  • [6] Mip1, an MEKK2-interacting protein, controls MEKK2 dimerization and activation
    Cheng, J
    Zhang, DY
    Kim, K
    Zhao, YX
    Zhao, YM
    Su, B
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (14) : 5955 - 5964
  • [7] INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B
    CROSS, DAE
    ALESSI, DR
    COHEN, P
    ANDJELKOVICH, M
    HEMMINGS, BA
    [J]. NATURE, 1995, 378 (6559) : 785 - 789
  • [8] Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase
    Feng, JH
    Park, J
    Cron, P
    Hess, D
    Hemmings, BA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (39) : 41189 - 41196
  • [9] The ups and downs of MEK kinase interactions
    Hagemann, C
    Blank, JL
    [J]. CELLULAR SIGNALLING, 2001, 13 (12) : 863 - 875
  • [10] Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    Hara, K
    Maruki, Y
    Long, XM
    Yoshino, K
    Oshiro, N
    Hidayat, S
    Tokunaga, C
    Avruch, J
    Yonezawa, K
    [J]. CELL, 2002, 110 (02) : 177 - 189