Deep Deterministic Policy Gradient for Navigation of Mobile Robots

被引:11
作者
de Jesus, Junior Costa [1 ]
Bottega, Jair Augusto [2 ]
de Souza Leite Cuadros, Marco Antonio [3 ]
Tello Gamarra, Daniel Fernando [4 ]
机构
[1] Fed Univ Rio Grande, Rio Grande, RS, Brazil
[2] Univ Fed Santa Maria, Santa Maria, RS, Brazil
[3] Fed Inst Espirito Santo, Serra, ES, Brazil
[4] Univ Fed Santa Maria, Proc Dept Elect, Santa Maria, RS, Brazil
关键词
Deep Deterministic Policy Gradient; Deep Reinforcement Learning; Navigation for Mobile Robots;
D O I
10.3233/JIFS-191711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article describes the use of the Deep Deterministic Policy Gradient network, a deep reinforcement learning algorithm, for mobile robot navigation. The neural network structure has as inputs laser range findings, angular and linear velocities of the robot, and position and orientation of the mobile robot with respect to a goal position. The outputs of the network will be the angular and linear velocities used as control signals for the robot. The experiments demonstrated that deep reinforcement learning's techniques that uses continuous actions, are efficient for decision-making in a mobile robot. Nevertheless, the design of the reward functions constitutes an important issue in the performance of deep reinforcement learning algorithms. In order to show the performance of the Deep Reinforcement Learning algorithm, we have applied successfully the proposed architecture in simulated environments and in experiments with a real robot.
引用
收藏
页码:349 / 361
页数:13
相关论文
共 30 条
[1]  
[Anonymous], 2016, ROS Robotics by Example
[2]  
[Anonymous], 2016, CORR, DOI DOI 10.1016/j.neuroscience.2018.04.006
[3]   DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [J].
Chen, Chenyi ;
Seff, Ari ;
Kornhauser, Alain ;
Xiao, Jianxiong .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2722-2730
[4]  
Chen YF, 2017, IEEE INT C INT ROBOT, P1343, DOI 10.1109/IROS.2017.8202312
[5]   Sensory Integration of a Mobile Robot Using the Embedded System Odroid-XU4 and ROS [J].
da Silva, Emanueli Santos ;
de Souza Leite Cuadros, Marco Antonio ;
Legg, Andrei Piccinini ;
Tello Gamarra, Daniel Fernando .
2019 LATIN AMERICAN ROBOTICS SYMPOSIUM, 2019 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR) AND 2019 WORKSHOP ON ROBOTICS IN EDUCATION (LARS-SBR-WRE 2019), 2019, :198-203
[6]  
da Silva R.M., 2018, INT C INT SYST DES A, P212
[7]  
Dobrevski M., 2018, 23 COMP VIS WINT WOR
[8]   Mobile Robot Navigation Using an Object Recognition Software with RGBD Images and the YOLO Algorithm [J].
Dos Reis, Douglas Henke ;
Welfer, Daniel ;
De Souza Leite Cuadros, Marco Antonio ;
Tello Gamarra, Daniel Fernando .
APPLIED ARTIFICIAL INTELLIGENCE, 2019, 33 (14) :1290-1305
[9]  
Gu SX, 2016, PR MACH LEARN RES, V48
[10]  
Hausknecht M., 2015 AAAI FALL S SER