Approximate controllability of impulsive Hilfer fractional differential inclusions

被引:21
作者
Du, Jun [1 ,2 ]
Jiang, Wei [1 ]
Niazi, Azmat Ullah Khan [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Huainan Normal Univ, Dept Appl Math, Huainan 232038, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 02期
基金
中国国家自然科学基金;
关键词
Approximate controllability; impulsive system; Hilfer fractional differential inclusions; multivalued maps; fixed point theorem; semigroup theory; EXISTENCE; UNIQUENESS; EQUATIONS;
D O I
10.22436/jnsa.010.02.23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, firstly by utilizing the theory of operators semigroup, probability density functions via impulsive conditions, we establish a new PC1-nu-mild solution for impulsive Hilfer fractional differential inclusions. Secondly we prove the existence of mild solutions for the impulsive Hilfer fractional differential inclusions by using fractional calculus, multi-valued analysis and the fixed-point technique. Then under some assumptions, the approximate controllability of associated system are formulated and proved. An example is provided to illustrate the application of the obtained theory. (C)2017 All rights reserved.
引用
收藏
页码:595 / 611
页数:17
相关论文
共 35 条
[21]   On the Approximate Controllability of Fractional Evolution Equations with Generalized Riemann-Liouville Fractional Derivative [J].
Mahmudov, N. I. ;
McKibben, M. A. .
JOURNAL OF FUNCTION SPACES, 2015, 2015
[22]  
Miller KS, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, V1st, P384
[23]   Variational approach to impulsive differential equations [J].
Nieto, Juan J. ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :680-690
[24]  
Podlubny I., 1998, "Fractional Differential Equations
[25]   Approximate controllability of differential inclusions in Hilbert spaces [J].
Rykaczewski, Krzysztof .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2701-2712
[26]   Approximate controllability of fractional nonlinear differential inclusions [J].
Sakthivel, R. ;
Ganesh, R. ;
Anthoni, S. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :708-717
[27]   A study on the mild solution of impulsive fractional evolution equations [J].
Shu, Xiao-Bao ;
Shi, Yajing .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 :465-476
[28]  
Tarasov VE, 2011, NONLINEAR PHYS SCI, P1
[29]  
Wang JR, 2011, DYNAM PART DIFFER EQ, V8, P345
[30]   Feedback control for fractional impulsive evolution systems [J].
Xiao, Cuie ;
Zeng, Biao ;
Liu, Zhenhai .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :924-936