Resolvable orthogonal array-based uniform sliced Latin hypercube designs

被引:15
|
作者
Yang, Xue [1 ,2 ]
Chen, Hao [1 ,2 ,3 ]
Liu, Min-Qian [1 ,2 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Stat, Tianjin 300071, Peoples R China
[3] Tianjin Univ Finance & Econ, Dept Stat, Tianjin 300222, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Centered L-2 discrepancy; Resolvable orthogonal array; Space-filling design; Sliced Lain hypercube design; SUPERSATURATED DESIGN; CONSTRUCTION; STRENGTH-3;
D O I
10.1016/j.spl.2014.06.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced Latin hypercube designs, introduced by Qian (2012), are widely used for computer experiments with qualitative and quantitative factors, multiple experiments, cross-validation and stochastic optimization. In this paper, we propose a new class of sliced Latin hypercube design, called the resolvable orthogonal array-based uniform sliced Latin hypercube design. Such designs are constructed via both symmetric and asymmetric resolvable orthogonal arrays, and measured by the centered L-2 discrepancy criterion. When the construction is based on a resolvable orthogonal array with strength w + 1, the resulting design not only possesses stratification in any w-dimensional projection for each slice, but also achieves stratification in any (w + 1)-dimensional projection for the whole design. Furthermore, the uniformity of the resulting design is also highly improved with respect to the centered L-2 discrepancy criterion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [1] Sliced Orthogonal Array-Based Latin Hypercube Designs
    Hwang, Youngdeok
    Qian, Peter Z. G.
    He, Xu
    TECHNOMETRICS, 2016, 58 (01) : 50 - 61
  • [2] Nested orthogonal array-based Latin hypercube designs
    He, Xu
    Qian, Peter Z. G.
    BIOMETRIKA, 2011, 98 (03) : 721 - 731
  • [3] Sliced Latin hypercube designs via orthogonal arrays
    Yin, Yuhui
    Lin, Dennis K. J.
    Liu, Min-Qian
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 149 : 162 - 171
  • [4] CONSTRUCTION OF SLICED ORTHOGONAL LATIN HYPERCUBE DESIGNS
    Yang, Jian-Feng
    Lin, C. Devon
    Qian, Peter Z. G.
    Lin, Dennis K. J.
    STATISTICA SINICA, 2013, 23 (03) : 1117 - 1130
  • [5] Uniform sliced Latin hypercube designs
    Chen, Hao
    Huang, Hengzhen
    Lin, Dennis K. J.
    Liu, Min-Qian
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2016, 32 (05) : 574 - 584
  • [6] Sliced Latin Hypercube Designs
    Qian, Peter Z. G.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 393 - 399
  • [7] Construction of sliced (nearly) orthogonal Latin hypercube designs
    Huang, Hengzhen
    Yang, Jian-Feng
    Liu, Min-Qian
    JOURNAL OF COMPLEXITY, 2014, 30 (03) : 355 - 365
  • [8] Construction of orthogonal general sliced Latin hypercube designs
    Bing Guo
    Xiao-Rong Li
    Min-Qian Liu
    Xue Yang
    Statistical Papers, 2023, 64 : 987 - 1014
  • [9] Construction of orthogonal general sliced Latin hypercube designs
    Guo, Bing
    Li, Xiao-Rong
    Liu, Min-Qian
    Yang, Xue
    STATISTICAL PAPERS, 2023, 64 (03) : 987 - 1014
  • [10] Nested Latin Hypercube Designs with Sliced Structures
    Chen, Hao
    Liu, Min-Qian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (22) : 4721 - 4733