Resolvable orthogonal array-based uniform sliced Latin hypercube designs

被引:15
作者
Yang, Xue [1 ,2 ]
Chen, Hao [1 ,2 ,3 ]
Liu, Min-Qian [1 ,2 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Stat, Tianjin 300071, Peoples R China
[3] Tianjin Univ Finance & Econ, Dept Stat, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Computer experiment; Centered L-2 discrepancy; Resolvable orthogonal array; Space-filling design; Sliced Lain hypercube design; SUPERSATURATED DESIGN; CONSTRUCTION; STRENGTH-3;
D O I
10.1016/j.spl.2014.06.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced Latin hypercube designs, introduced by Qian (2012), are widely used for computer experiments with qualitative and quantitative factors, multiple experiments, cross-validation and stochastic optimization. In this paper, we propose a new class of sliced Latin hypercube design, called the resolvable orthogonal array-based uniform sliced Latin hypercube design. Such designs are constructed via both symmetric and asymmetric resolvable orthogonal arrays, and measured by the centered L-2 discrepancy criterion. When the construction is based on a resolvable orthogonal array with strength w + 1, the resulting design not only possesses stratification in any w-dimensional projection for each slice, but also achieves stratification in any (w + 1)-dimensional projection for the whole design. Furthermore, the uniformity of the resulting design is also highly improved with respect to the centered L-2 discrepancy criterion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 17 条
[1]   ORTHOGONAL RESOLUTION-IV DESIGNS FOR SOME ASYMMETRICAL FACTORIALS [J].
AGRAWAL, V ;
DEY, A .
TECHNOMETRICS, 1983, 25 (02) :197-199
[2]  
[Anonymous], 1999, Springer Series in Statistics, DOI DOI 10.1007/978-1-4612-1478-6
[3]   Orthogonal arrays of strength 3 and small run sizes [J].
Brouwer, Andries E. ;
Cohen, Arjeh M. ;
Nguyen, Man V. M. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (09) :3268-3280
[4]   THRESHOLD ACCEPTING - A GENERAL-PURPOSE OPTIMIZATION ALGORITHM APPEARING SUPERIOR TO SIMULATED ANNEALING [J].
DUECK, G ;
SCHEUER, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (01) :161-175
[5]  
Fang KT, 2006, CH CRC COMP SCI DATA, P3
[6]  
Fang KT, 2003, HANDB STAT, V22, P131, DOI 10.1016/S0169-7161(03)22006-X
[7]   Optimal mixed-level supersaturated design [J].
Fang, KT ;
Lin, DKJ ;
Liu, MQ .
METRIKA, 2003, 58 (03) :279-291
[8]   Uniform supersaturated design and its construction [J].
Fang, KT ;
Ge, GN ;
Liu, MQ .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (08) :1080-1088
[9]   Uniform designs limit aliasing [J].
Hickernell, FJ ;
Liu, MQ .
BIOMETRIKA, 2002, 89 (04) :893-904
[10]   A generalized discrepancy and quadrature error bound [J].
Hickernell, FJ .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :299-322