Optical solitons and optical rogons of generalized resonant dispersive nonlinear Schrodinger's equation with power law nonlinearity

被引:112
作者
Mirzazadeh, M. [1 ]
Eslami, M. [2 ]
Vajargah, B. Fathi [1 ]
Biswas, Anjan [3 ,4 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Math, Rasht, Iran
[2] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[4] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
来源
OPTIK | 2014年 / 125卷 / 16期
关键词
Bright solitons; Optical rogons; Singular solitons integrability; TRAVELING-WAVE SOLUTIONS; SINE-COSINE METHOD; SIMPLEST EQUATION; TANH METHOD; (G'/G)-EXPANSION METHOD; EVOLUTION-EQUATIONS;
D O I
10.1016/j.ijleo.2014.04.014
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper obtains solitons and singular periodic solutions to the generalized resonant dispersive nonlinear Schrodinger' equation with power law nonlinearity. There are several integration tools that are adopted to extract these solutions. They are simplest equation method, functional variable method, sine cosine function method, tanh function method and the G'/G-expansion method. These integration techniques reveal bright and singular solitons as well as the corresponding singular periodic solutions to the nonlinear evolution equation. These solitons solutions are important in the nonlinear fiber optics community as well as in the study of rogue waves. 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:4246 / 4256
页数:11
相关论文
共 28 条
[1]  
Biswas A., 2013, CHINESE J PHYS, V51, P157
[2]   Stationary solutions for nonlinear dispersive Schrodinger's equation [J].
Biswas, Anjan ;
Khalique, Chaudry Masood .
NONLINEAR DYNAMICS, 2011, 63 (04) :623-626
[3]   A procedure to construct exact solutions of nonlinear evolution equations [J].
Cevikel, Adem Cengiz ;
Bekir, Ahmet ;
Akar, Mutlu ;
San, Sait .
PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (03) :337-344
[4]   The G′/G method and topological soliton solution of the K(m, n) equation [J].
Ebadi, Ghodrat ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) :2377-2382
[5]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[6]   Exact solitary waves of the Fisher equation [J].
Kudryashov, NA .
PHYSICS LETTERS A, 2005, 342 (1-2) :99-106
[7]   Simplest equation method to look for exact solutions of nonlinear differential equations [J].
Kudryashov, NA .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1217-1231
[8]   ON TYPES OF NONLINEAR NONINTEGRABLE EQUATIONS WITH EXACT-SOLUTIONS [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1991, 155 (4-5) :269-275
[9]   Meromorphic solutions of nonlinear ordinary differential equations [J].
Kudryashov, Nikolai A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) :2778-2790
[10]   Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation [J].
Ma, WX ;
Fuchssteiner, B .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (03) :329-338