Regular dessins with a given automorphism group

被引:4
作者
Jones, Gareth A. [1 ]
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
来源
RIEMANN AND KLEIN SURFACES, AUTOMORPHISMS, SYMMETRIES AND MODULI SPACES | 2014年 / 629卷
关键词
Dessin d'enfant; regular dessin; automorphism group; PROBABILITY; HYPERMAPS; OPERATIONS; SUBGROUPS; MAPS;
D O I
10.1090/conm/629/12568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dessins d'enfants are combinatorial structures on compact Riemann surfaces defined over algebraic number fields, and regular dessins are the most symmetric of them. If G is a finite group, there are only finitely many regular dessins with automorphism group G. It is shown how to enumerate them, how to represent them all as quotients of a single regular dessin U(G), and how certain hypermap operations act on them. For example, if G is a cyclic group of order n then U(G) is a map on the Fermat curve of degree n and genus (n - 1)(n - 2)/2. On the other hand, if G = A(5) then U(G) has genus 274218830047232000000000000000001. For other non-abelian finite simple groups, the genus is much larger.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 48 条
[1]  
[Anonymous], ATLAS FINITE GROUPS
[2]  
Belyi G. V., 1979, IZV AN SSSR M, V43, P267
[3]   FUCHSIAN TRIANGLE GROUPS AND GROTHENDIECK DESSINS - VARIATIONS ON A THEME OF BELYI [J].
COHEN, PB ;
ITZYKSON, C ;
WOLFART, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (03) :605-627
[4]  
d'Azevedo A.Breda., 2001, Beitrage zur Algebra und Geometrie, Contribuitions to algebra and Geometry, V42, P1
[5]  
Dickson L. E., 1958, LINEAR GROUPS EXPOSI
[6]  
Dixon JD, 2005, ELECTRON J COMB, V12
[7]   PROBABILITY OF GENERATING SYMMETRIC GROUP [J].
DIXON, JD .
MATHEMATISCHE ZEITSCHRIFT, 1969, 110 (03) :199-&
[8]  
DOWNS M, 1991, J LOND MATH SOC, V43, P61
[9]  
Downs M., 1988, THESIS U SOUTHAMPTON
[10]  
Downs M. L. N., ARXIV13095215MATHGR