Mitigation of Carbon Nanotube Neurosensor Induced Transcriptomic and Morphological Changes in Mouse Microglia with Surface Passivation

被引:21
作者
Yang, Darwin [1 ]
Yang, Sarah J. [1 ]
Del Bonis-O'Donnell, Jackson Travis [1 ]
Pinals, Rebecca L. [1 ]
Landry, Markita P. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, QB3, Berkeley, CA 94720 USA
[3] Innovat Genom Inst, Berkeley, CA 94720 USA
[4] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
关键词
bionanotechnology; neuro-sensors; microglia; live-cell imaging; RNA-seq; biocompatibility; catecholamine; EXTRACELLULAR-SPACE; BRAIN MICROGLIA; DAMAGE; ACTIVATION;
D O I
10.1021/acsnano.0c06154
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-walled carbon nanotubes (SWCNT) are used in neuroscience for deep-brain imaging, neuron activity recording, measuring brain morphology, and imaging neuromodulation. However, the extent to which SWCNT-based probes impact brain tissue is not well understood. Here, we study the impact of (GT)(6)-SWCNT dopamine nanosensors on SIM-A9 mouse microglial cells and show SWCNT-induced morphological and transcriptomic changes in these brain immune cells. Next, we introduce a strategy to passivate (GT)(6)-SWCNT nanosensors with PEGylated phospholipids to improve both biocompatibility and dopamine imaging quality. We apply these passivated dopamine nanosensors to image electrically stimulated striatal dopamine release in acute mouse brain slices, and show that slices labeled with passivated nanosensors exhibit higher fluorescence response to dopamine and measure more putative dopamine release sites. Hence, this facile modification to SWCNT-based dopamine probes provides immediate improvements to both biocompatibility and dopamine imaging functionality with an approach that is readily translatable to other SWCNT-based neurotechnologies.
引用
收藏
页码:13794 / 13805
页数:12
相关论文
共 48 条
[1]   Rough around the Edges: The Inflammatory Response of Microglial Cells to Spiky Nanoparticles [J].
Albanese, Alexandre ;
Sykes, Edward A. ;
Chan, Warren C. W. .
ACS NANO, 2010, 4 (05) :2490-2493
[2]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[3]   Cofilin Mediates LPS-Induced Microglial Cell Activation and Associated Neurotoxicity Through Activation of NF-κB and JAK-STAT Pathway [J].
Alhadidi, Qasim ;
Shah, Zahoor A. .
MOLECULAR NEUROBIOLOGY, 2018, 55 (02) :1676-1691
[4]   Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia [J].
Bernier, Louis-Philippe ;
Bohlen, Christopher J. ;
York, Elisa M. ;
Choi, Hyun B. ;
Kamyabi, Alireza ;
Dissing-Olesen, Lasse ;
Hefendehl, Jasmin K. ;
Collins, Hannah Y. ;
Stevens, Beth ;
Barres, Ben A. ;
MacVicar, Brian A. .
CELL REPORTS, 2019, 27 (10) :2895-+
[5]  
Beyene A. G., 2019, SCI ADV, V5, P1
[6]   New Optical Probes Bring Dopamine to Light [J].
Beyene, Abraham G. ;
Delevich, Kristen ;
Yang, Sarah J. ;
Landry, Markita P. .
BIOCHEMISTRY, 2018, 57 (45) :6379-6381
[7]   Ultralarge Modulation of Fluorescence by Neuromodulators in Carbon Nanotubes Functionalized with Self-Assembled Oligonucleotide Rings [J].
Beyene, Abraham G. ;
Alizadehmojarad, Ali A. ;
Dorlhiac, Gabriel ;
Goh, Natalie ;
Streets, Aaron M. ;
Kral, Petr ;
Vukovic, Lela ;
Landry, Markita P. .
NANO LETTERS, 2018, 18 (11) :6995-7003
[8]   Protein-targeted corona phase molecular recognition [J].
Bisker, Gili ;
Dong, Juyao ;
Park, Hoyoung D. ;
Iverson, Nicole M. ;
Ahn, Jiyoung ;
Nelson, Justin T. ;
Landry, Markita P. ;
Kruss, Sebastian ;
Strano, Michael S. .
NATURE COMMUNICATIONS, 2016, 7
[9]   Solvatochromism in single-walled carbon nanotubes [J].
Choi, Jong Hyun ;
Strano, Michael S. .
APPLIED PHYSICS LETTERS, 2007, 90 (22)
[10]  
Cui, 2017, SCI REP-UK, V7, P1, DOI [10.1038/s41598-016-0028-x, DOI 10.1038/S41598-016-0028-X]