An elementary proof of Strauss conjecture

被引:41
作者
Lai, Ning-An [1 ]
Zhou, Yi [2 ]
机构
[1] Coll Sci, Lishui University 323000, Zhejiang, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Strauss conjecture; Morawetz energy estimate; Weighted Strichartz estimates; Lifespan; SEMILINEAR WAVE-EQUATIONS; TIME BLOW-UP; GLOBAL EXISTENCE; LIFE-SPAN; U=/U/P;
D O I
10.1016/j.jfa.2014.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Cauchy problem for semilinear wave equation in high dimensions. First we use a Morawetz energy estimate which is obtained by integrating on the light cone to get a weighted L-2 - L-2 estimate of the solution, and then give an elementary proof of the weighted Strichartz estimate in Georgiev et al. [3], hence the Strauss conjecture. We also obtain a variant of the weighted Strichartz estimates and give the sharp estimate of the lifespan for the semilinear wave equation with subcritical nonlinearity. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1364 / 1381
页数:18
相关论文
共 20 条
[1]  
[Anonymous], 1992, J PARTIAL DIFFER EQ
[2]  
[Anonymous], 1998, COURANT LECT NOTES M
[3]  
Di Pomponio S, 2001, ASYMPTOTIC ANAL, V28, P91
[4]   Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions [J].
Du, Yi ;
Metcalfe, Jason ;
Sogge, Christopher D. ;
Zhou, Yi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (08) :1487-1506
[5]   Weighted Strichartz estimates and global existence for semilinear wave equations [J].
Georgiev, V ;
Lindblad, H ;
Sogge, CD .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) :1291-1319
[6]   FINITE-TIME BLOW-UP FOR SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (03) :323-340
[7]   EXISTENCE IN THE LARGE FOR CLASS U = F (U) IN 2 SPACE DIMENSIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (02) :233-261
[8]   ON ABSTRACT STRICHARTZ ESTIMATES AND THE STRAUSS CONJECTURE FOR NONTRAPPING OBSTACLES [J].
Hidano, Kunio ;
Metcalfe, Jason ;
Smith, Hart F. ;
Sogge, Christopher D. ;
Zhou, Yi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (05) :2789-2809
[10]   BLOW-UP FOR SOLUTIONS OF CLASS-U=/U/P WITH SMALL INITIAL DATA [J].
LINDBLAD, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (06) :757-821