On supersaturation and stability for generalized Turan problems

被引:1
|
作者
Halfpap, Anastasia [1 ]
Palmer, Cory [1 ]
机构
[1] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
关键词
stability; supersaturation; Turá n number; MAXIMUM NUMBER; PENTAGONS;
D O I
10.1002/jgt.22652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a graph F. We say that a graph is F-free if it contains no copy of F as a subgraph. Let ex(n,H,F) denote the maximum number of copies of a graph H in an n-vertex F-free graph. In this note, we will give a new general supersaturation result for ex(n,H,F) in the case when chi(H)<chi(F) as well as a new proof of a stability theorem for ex(n,Kr,F).
引用
收藏
页码:232 / 240
页数:9
相关论文
共 50 条
  • [1] Generalized rainbow Turan problems
    Gerbner, Daniel
    Methuku, Abhishek
    Meszaros, Tamas
    Palmer, Cory
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02)
  • [2] SOME STABILITY AND EXACT RESULTS IN GENERALIZED TURaN PROBLEMS
    Gerbner, Daniel
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2023, 60 (01) : 16 - 26
  • [3] A localized approach to generalized Turan problems
    Kirsch, Rachel
    Nir, J. D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03) : 3 - 34
  • [4] Generalized Turan Problems for Small Graphs
    Gerbner, Daniel
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (02) : 549 - 572
  • [5] Generalized Turan problems for even cycles
    Gerbner, Daniel
    Gyori, Ervin
    Methuku, Abhishek
    Vizer, Mate
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 169 - 213
  • [6] Stability version of Dirac's theorem and its applications for generalized Turan problems
    Zhu, Xiutao
    Györi, Ervin
    He, Zhen
    Lv, Zequn
    Salia, Nika
    Xiao, Chuanqi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1857 - 1873
  • [7] Some exact results for generalized Turan problems
    Gerbner, Daniel
    Palmer, Cory
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [8] Supersaturation and stability for forbidden subposet problems
    Patkos, Balazs
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 136 : 220 - 237
  • [9] GENERALIZED TURAN PROBLEMS FOR EVEN CYCLES
    Gerbner, D.
    Gyori, E.
    Methuku, A.
    Vizer, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 723 - 728
  • [10] Generalized Planar Turan Numbers
    Gyori, Ervin
    Paulos, Addisu
    Salia, Nika
    Tompkins, Casey
    Zamora, Oscar
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04)