Local pattern classification differentiates processes of economic valuation

被引:40
作者
Clithero, John A. [1 ,2 ,6 ]
Carter, R. McKell [1 ,3 ,6 ]
Huettel, Scott A. [1 ,4 ,5 ,6 ]
机构
[1] Duke Univ, Ctr Cognit Neurosci, Durham, NC 27708 USA
[2] Duke Univ, Dept Econ, Durham, NC 27708 USA
[3] Duke Univ, Dept Neurobiol, Durham, NC 27708 USA
[4] Duke Univ, Dept Psychol & Neurosci, Durham, NC 27708 USA
[5] Duke Univ, Brain Imaging & Anal Ctr, Durham, NC 27708 USA
[6] Duke Univ, Ctr Cognit Neurosci, Durham, NC 27708 USA
关键词
Local information; Pattern classification; Posterior parietal cortex; Value; ORBITOFRONTAL CORTEX; DECISION-MAKING; BRAIN ACTIVITY; PARIETAL CORTICES; COGNITIVE STATES; UTILITY-THEORY; RISK; UNCERTAINTY; PREDICTION; REWARD;
D O I
10.1016/j.neuroimage.2008.12.074
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
For effective decision making, individuals must be able to form subjective values from many types of information. Yet, the neural mechanisms that underlie potential differences in value computation across different decision scenarios are incompletely understood. Here, we used functional magnetic resonance imaging (fMRI), in conjunction with the machine learning technique of support vector machines (SVM), to identify brain regions that contain unique local information associated with different types of valuation. We used a combinatoric approach that evaluated the unique contributions of different brain regions to model generalization strength. Local voxel patterns in left posterior parietal cortex contained unique information differentiating probabilistic and intertemporal valuation, a result that was not accessible using standard fMRI analyses. We conclude that the early valuation phases for these reward types differ on a. ne spatial scale, suggesting the existence of computational topographies along the value construction pathway. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1329 / 1338
页数:10
相关论文
共 73 条
[1]   Tracing problem solving in real time: fMRI analysis of the subject-paced tower of Hanoi [J].
Anderson, JR ;
Albert, MV ;
Fincham, JM .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2005, 17 (08) :1261-1274
[2]   MEASURING UTILITY BY A SINGLE-RESPONSE SEQUENTIAL METHOD [J].
BECKER, GM ;
DEGROOT, MH ;
MARSCHAK, J .
BEHAVIORAL SCIENCE, 1964, 9 (03) :226-232
[3]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[4]   The psychophysics toolbox [J].
Brainard, DH .
SPATIAL VISION, 1997, 10 (04) :433-436
[5]   Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI [J].
Buchel, C ;
Friston, KJ .
CEREBRAL CORTEX, 1997, 7 (08) :768-778
[6]   Dissociable contributions of prefrontal and parietal cortices to response selection [J].
Bunge, SA ;
Hazeltine, E ;
Scanlon, MD ;
Rosen, AC ;
Gabrieli, JDE .
NEUROIMAGE, 2002, 17 (03) :1562-1571
[7]   Neuroeconomics: How neuroscience can inform economics [J].
Camerer, C ;
Loewenstein, G ;
Prelec, D .
JOURNAL OF ECONOMIC LITERATURE, 2005, 43 (01) :9-64
[8]   Functional imaging of numerical processing in adults and 4-y-old children [J].
Cantlon, Jessica F. ;
Brannon, Elizabeth M. ;
Carter, Elizabeth J. ;
Pelphrey, Kevin A. .
PLOS BIOLOGY, 2006, 4 (05) :844-854
[9]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[10]   Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex [J].
Cox, DD ;
Savoy, RL .
NEUROIMAGE, 2003, 19 (02) :261-270