On the independence Jeffreys prior for skew-symmetric models

被引:9
作者
Rubio, Francisco Javier [1 ]
Liseo, Brunero [2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Univ Roma La Sapienza, MEMOTEF, Rome, Italy
基金
英国工程与自然科学研究理事会;
关键词
Posterior existence; Scale mixtures of normals; Skewness; DISTRIBUTIONS; REPRESENTATION;
D O I
10.1016/j.spl.2013.11.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the Jeffreys prior of the skewness parameter of a general class of scalar skew-symmetric models. We show that this prior is symmetric, proper, and with tails O(vertical bar lambda vertical bar(-3/2)) under mild regularity conditions. We also calculate the independence Jeffreys prior for the case with unknown location and scale parameters, and investigate conditions for the propriety of the corresponding posterior distribution. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 15 条
[1]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[2]   Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :367-389
[3]  
Azzalini A., 1986, STATISTICA, V46, P199
[4]  
Bayes C.L., 2007, Brazilian Journal of Probability and Statistics, V21, P141
[5]   Framework for Skew-Probit Links in Binary Regression [J].
Bazan, Jorge L. ;
Bolfarine, Heleno ;
Branco, Marcia D. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (04) :678-697
[6]   Objective Bayesian Analysis of Skew-t Distributions [J].
Branco, Marcia D'Elia ;
Genton, Marc G. ;
Liseo, Brunero .
SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (01) :63-85
[7]   Bayesian regression analysis with scale mixtures of normals [J].
Fernández, C ;
Steel, MFJ .
ECONOMETRIC THEORY, 2000, 16 (01) :80-101
[8]  
Fernandez C., 1998, BAYESIAN STAT, V6, P213
[9]   Flexibly modeling the baseline risk in meta-analysis [J].
Guolo, A. .
STATISTICS IN MEDICINE, 2013, 32 (01) :40-50
[10]   Skew-symmetric distributions and Fisher information - a tale of two densities [J].
Hallin, Marc ;
Ley, Christophe .
BERNOULLI, 2012, 18 (03) :747-763