Existence of constant mean curvature hypersurfaces in asymptotically flat spacetimes

被引:9
作者
Andersson, L
Iriondo, MS
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[2] Natl Univ Cordoba, FAMAF, RA-5000 Cordoba, Argentina
关键词
asymptotic structure; constant mean curvature; Lorentzian geometry;
D O I
10.1023/A:1006642209413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of existence of spacelike hypersurfaces with constant mean curvature in asymptotically flat spacetimes is considered for a class of asymptotically Schwarzschild spacetimes satisfying an interior condition. Using a barrier construction, a proof is given of the existence of complete hypersurfaces with constant mean cuvature which intersect null infinity in a regular cut.
引用
收藏
页码:503 / 538
页数:36
相关论文
共 11 条
[1]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[2]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[3]  
BARTNIK R, 1988, ACTA MATH, V165, P145
[4]  
BATNIK R, 1987, P CTR MATH ANAL AUST, V12, P24
[5]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[6]   H-SURFACES IN LORENTZIAN MANIFOLDS [J].
GERHARDT, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (04) :523-553
[7]  
Geroch R., 1977, Asymptotic Structure of Space-Time, Ved, pp 1
[8]  
HAWKING SW, 1973, MONOGRAPHS MATH PHYS, V1
[9]  
IRIONDO M, 1994, THESIS ROYAL I TECHN
[10]  
Protter M.H., 1967, MAXIMUM PRINCIPLE DI