Substrate viscosity impairs temozolomide-mediated inhibition of glioblastoma cells' growth

被引:3
作者
Ciesluk, Mateusz [1 ]
Piktel, Ewelina [2 ]
Wnorowska, Urszula [1 ]
Sklodowski, Karol [1 ]
Kochanowicz, Jan [3 ]
Kulakowska, Alina [3 ]
Bucki, Robert [1 ]
Pogoda, Katarzyna [4 ]
机构
[1] Med Univ Bialystok, Dept Med Microbiol & Nanobiomed Engn, PL-15222 Bialystok, Poland
[2] Med Univ Bialystok, Independent Lab Nanomed, PL-15222 Bialystok, Poland
[3] Med Univ Bialystok, Dept Neurol, PL-15276 Bialystok, Poland
[4] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2022年 / 1868卷 / 11期
关键词
Rheology; Glioblastoma; Temozolomide; Polyacrylamide hydrogels; Viscoelasticity; Drug effectiveness; MAGNETIC-RESONANCE ELASTOGRAPHY; BRAIN-TISSUE; BREAST-CANCER; STIFFNESS; SURVIVAL; PROLIFERATION; RADIOTHERAPY; APOPTOSIS; BEVACIZUMAB; METASTASIS;
D O I
10.1016/j.bbadis.2022.166513
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The mechanical state of the extracellular environment of the brain cells considerably affects their phenotype during the development of central nervous system (CNS) pathologies, and when the cells respond to drugs. The reports on the evaluation of the viscoelastic properties of different brain tumors have shown that both tissue stiffness and viscosity can be altered during cancer development. Although a compelling number of reports established the role of substrate stiffness on the proliferation, motility, and drug sensitivity of brain cancer cells, there is a lack of parallel data in terms of alterations in substrate viscosity. Methods: Based on viscoelasticity measurements of rat brain samples using strain rheometry, polyacrylamide (PAA) hydrogels mimicking elastic and viscous parameters of the tissues were prepared. Optical microscopy and flow cytometry were employed to assess the differences in glioblastoma cells morphology, proliferation, and cytotoxicity of anticancer drug temozolomide (TMZ) due to increased substrate viscosity. Results: Our results indicate that changes in substrate viscosity affect the proliferation of untreated glioma cells to a lesser extent, but have a significant impact on the apoptosis-associated depolarization of mitochondria and level of DNA fragmentation. This suggests that viscosity sensing and stiffness sensing machinery can activate different signaling pathways in glioma cells. Conclusion: Collected data indicate that viscosity should be considered an important parameter in in vitro polymer-based cell culture systems used for drug screening.
引用
收藏
页数:13
相关论文
共 94 条
  • [1] Glioblastoma multiforme: Pathogenesis and treatment
    Alifieris, Constantinos
    Trafalis, Dimitrios T.
    [J]. PHARMACOLOGY & THERAPEUTICS, 2015, 152 : 63 - 82
  • [2] Aunan-Diop Jan Saip, 2022, Top Magn Reson Imaging, V31, P9, DOI 10.1097/RMR.0000000000000292
  • [3] Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix
    Babaei, Behzad
    Velasquez-Mao, A. J.
    Prys, Kenneth M.
    McConnaughey, William B.
    Elson, Elliot L.
    Genin, Guy M.
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 84 : 198 - 207
  • [4] Phase II Study of Cediranib, an Oral Pan-Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor, in Patients With Recurrent Glioblastoma
    Batchelor, Tracy T.
    Duda, Dan G.
    di Tomaso, Emmanuelle
    Ancukiewicz, Marek
    Plotkin, Scott R.
    Gerstner, Elizabeth
    Eichler, April F.
    Drappatz, Jan
    Hochberg, Fred H.
    Benner, Thomas
    Louis, David N.
    Cohen, Kenneth S.
    Chea, Houng
    Exarhopoulos, Alexis
    Loeffler, Jay S.
    Moses, Marsha A.
    Ivy, Percy
    Sorensen, A. Gregory
    Wen, Patrick Y.
    Jain, Rakesh K.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (17) : 2817 - 2823
  • [5] Beauchesne P, 2003, Am J Clin Oncol, V26, pe22, DOI 10.1097/00000421-200306000-00026
  • [6] Regulating myoblast phenotype through controlled gel stiffness and degradation
    Boontheekul, Tanyarut
    Hill, Elliott E.
    Kong, Hyun-Joon
    Mooney, David J.
    [J]. TISSUE ENGINEERING, 2007, 13 (07): : 1431 - 1442
  • [7] Rheological characterization of human brain tissue
    Budday, S.
    Sommer, G.
    Haybaeck, J.
    Steinmann, P.
    Holzapfel, G. A.
    Kuhl, E.
    [J]. ACTA BIOMATERIALIA, 2017, 60 : 315 - 329
  • [8] Mechanical properties of gray and white matter brain tissue by indentation
    Budday, Silvia
    Nay, Richard
    de Rooij, Rijk
    Steinmann, Paul
    Wyrobek, Thomas
    Ovaert, Timothy C.
    Kuhl, Ellen
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 46 : 318 - 330
  • [9] The influence of substrate creep on mesenchymal stem cell behaviour and phenotype
    Cameron, Andrew R.
    Frith, Jessica E.
    Cooper-White, Justin J.
    [J]. BIOMATERIALS, 2011, 32 (26) : 5979 - 5993
  • [10] Shear wave elastography of tumour growth in a human breast cancer model with pathological correlation
    Chamming's, Foucauld
    Latorre-Ossa, H.
    Le Frere-Belda, M. A.
    Fitoussi, V.
    Quibel, T.
    Assayag, F.
    Marangoni, E.
    Autret, G.
    Balvay, D.
    Pidial, L.
    Gennisson, J. L.
    Tanter, M.
    Cuenod, C. A.
    Clement, O.
    Fournier, L. S.
    [J]. EUROPEAN RADIOLOGY, 2013, 23 (08) : 2079 - 2086