Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

被引:50
作者
Velikovich, A. L. [1 ]
Schmit, P. F. [2 ]
机构
[1] US Navy, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
NONLINEAR EVOLUTION;
D O I
10.1063/1.4938272
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)]. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 39 条
[1]   Observation of Strong Oscillations of Areal Mass in an Unsupported Shock Wave [J].
Aglitskiy, Y. ;
Karasik, M. ;
Velikovich, A. L. ;
Serlin, V. ;
Weaver, J. ;
Kessler, T. J. ;
Schmitt, A. J. ;
Obenschain, S. P. ;
Metzler, N. ;
Oh, J. .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)
[2]   Bell-Plesset effects for an accelerating interface with contiguous density gradients [J].
Amendt, P .
PHYSICS OF PLASMAS, 2006, 13 (04)
[3]  
Anisimov S. I., 1977, Pis'ma v Zhurnal Tekhnicheskoi Fizika, V3, P1081
[4]  
[Anonymous], 1965, Handbook of mathematical functions: with formulas, graphs, and mathematical tables
[5]  
[Anonymous], 1882, Proceedings of the London Mathematical Society, V1, P170, DOI [DOI 10.1112/PLMS/S1-14.1.170, 10.1112/plms/s1-14.1.170]
[6]  
Atzeni S., 2004, PHYS INERTIAL FUSION
[7]   Observations of Modified Three-Dimensional Instability Structure for Imploding z-Pinch Liners that are Premagnetized with an Axial Field [J].
Awe, T. J. ;
McBride, R. D. ;
Jennings, C. A. ;
Lamppa, D. C. ;
Martin, M. R. ;
Rovang, D. C. ;
Slutz, S. A. ;
Cuneo, M. E. ;
Owen, A. C. ;
Sinars, D. B. ;
Tomlinson, K. ;
Gomez, M. R. ;
Hansen, S. B. ;
Herrmann, M. C. ;
McKenney, J. L. ;
Nakhleh, C. ;
Robertson, G. K. ;
Rochau, G. A. ;
Savage, M. E. ;
Schroen, D. G. ;
Stygar, W. A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (23)
[8]  
Bell G. I., 1951, LA1321 LOS AL SCI LA
[9]   VARIATION IN THE AMPLITUDE OF PERTURBATIONS ON THE INNER SURFACE OF AN IMPLODING SHELL DURING THE COASTING PHASE [J].
BOOK, DL ;
BODNER, SE .
PHYSICS OF FLUIDS, 1987, 30 (02) :367-376
[10]  
Bud'ko A. B., 1989, Soviet Physics - JETP, V68, P279