On Jordan ideals and matrix rings

被引:0
作者
Roche, Jennifer L. [1 ]
机构
[1] Coll Wooster, Wooster, OH 44691 USA
关键词
Matrix rings; Jordan ideals; Nonassociative algebras;
D O I
10.1016/j.laa.2009.05.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For A, a commutative ring, and U = M(2)(A), results by Costa and Keller characterize certain Ep(2, U)-normalized subgroups of the symplectic group, Sp(2, U) via structures utilizing Jordan ideals and the notion of radices. The following work creates a Jordan ideal structure theorem for Z(2)-graded rings, A(0) circle plus A(1), and a Z(2)-graded matrix algebra. The major theorem is a generalization of Costa and Keller's previous work on matrix algebras over commutative rings. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1675 / 1680
页数:6
相关论文
共 2 条
[1]  
COSTA DL, 1992, J REINE ANGEW MATH, V427, P51
[2]   THE E(2, A) SECTIONS OF SL(2, A) [J].
COSTA, DL ;
KELLER, GE .
ANNALS OF MATHEMATICS, 1991, 134 (01) :159-188