Selecting single cell clustering parameter values using subsampling-based robustness metrics

被引:45
作者
Patterson-Cross, Ryan B. [1 ]
Levine, Ariel J. [1 ]
Menon, Vilas [2 ]
机构
[1] NINDS, Spinal Circuits & Plast Unit, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[2] Columbia Univ, Dept Neurol, Ctr Translat & Computat Neuroimmunol, New York, NY 10027 USA
关键词
Single cell RNAseq; Parameter selection; Clustering; Resolution; RNA-SEQ; NEURONS;
D O I
10.1186/s12859-021-03957-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundGenerating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems.ResultsHere, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple "robustness score" for each of these clusters, facilitating the assessment of cluster quality.ConclusionchooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.
引用
收藏
页数:13
相关论文
共 19 条
[1]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[2]   Systematic comparison of single-cell and single-nucleus RNA-sequencing methods [J].
Ding, Jiarui ;
Adiconis, Xian ;
Simmons, Sean K. ;
Kowalczyk, Monika S. ;
Hession, Cynthia C. ;
Marjanovic, Nemanja D. ;
Hughes, Travis K. ;
Wadsworth, Marc H. ;
Burks, Tyler ;
Nguyen, Lan T. ;
Kwon, John Y. H. ;
Baraks, Boaz ;
Ge, William ;
Kedaigle, Amanda J. ;
Carroll, Shaina ;
Li, Shuqiang ;
Hacohen, Nir ;
Rozenblatt-Rosen, Orit ;
Shalek, Alex K. ;
Villani, Alexandra-Chloe ;
Regev, Aviv ;
Levin, Joshua Z. .
NATURE BIOTECHNOLOGY, 2020, 38 (06) :737-+
[3]  
Habib N, 2017, NAT METHODS, V14, P955, DOI [10.1038/NMETH.4407, 10.1038/nmeth.4407]
[4]   A cluster robustness score for identifying cell subpopulations in single cell gene expression datasets from heterogeneous tissues and tumors [J].
Kanter, Itamar ;
Dalerba, Piero ;
Kalisky, Tomer .
BIOINFORMATICS, 2019, 35 (06) :962-971
[5]   SC3: consensus clustering of single-cell RNA-seq data [J].
Kiselev, Vladimir Yu ;
Kirschner, Kristina ;
Schaub, Michael T. ;
Andrews, Tallulah ;
Yiu, Andrew ;
Chandra, Tamir ;
Natarajan, Kedar N. ;
Reik, Wolf ;
Barahona, Mauricio ;
Green, Anthony R. ;
Hemberg, Martin .
NATURE METHODS, 2017, 14 (05) :483-+
[6]   Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain [J].
Lake, Blue B. ;
Chen, Song ;
Sos, Brandon C. ;
Fan, Jean ;
Kaeser, Gwendolyn E. ;
Yung, Yun C. ;
Duong, Thu E. ;
Gao, Derek ;
Chun, Jerold ;
Kharchenko, Peter V. ;
Zhang, Kun .
NATURE BIOTECHNOLOGY, 2018, 36 (01) :70-+
[7]   Deep generative modeling for single-cell transcriptomics [J].
Lopez, Romain ;
Regier, Jeffrey ;
Cole, Michael B. ;
Jordan, Michael I. ;
Yosef, Nir .
NATURE METHODS, 2018, 15 (12) :1053-+
[8]   A robustness metric for biological data clustering algorithms [J].
Lu, Yuping ;
Phillips, Charles A. ;
Langston, Michael A. .
BMC BIOINFORMATICS, 2019, 20 (Suppl 15)
[9]   Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets [J].
Macosko, Evan Z. ;
Basu, Anindita ;
Satija, Rahul ;
Nemesh, James ;
Shekhar, Karthik ;
Goldman, Melissa ;
Tirosh, Itay ;
Bialas, Allison R. ;
Kamitaki, Nolan ;
Martersteck, Emily M. ;
Trombetta, John J. ;
Weitz, David A. ;
Sanes, Joshua R. ;
Shalek, Alex K. ;
Regev, Aviv ;
McCarroll, Steven A. .
CELL, 2015, 161 (05) :1202-1214
[10]   Putative cell type discovery from single-cell gene expression data [J].
Miao, Zhichao ;
Moreno, Pablo ;
Huang, Ni ;
Papatheodorou, Irene ;
Brazma, Alvis ;
Teichmann, Sarah A. .
NATURE METHODS, 2020, 17 (06) :621-+