Remote Sensing Image Retrieval via Symmetric Normal Inverse Gaussian Modeling of Nonsubsampled Shearlet Transform Coefficients

被引:2
作者
Baruah, Hilly Gohain [1 ]
Nath, Vijay Kumar [1 ]
Hazarika, Deepika [1 ]
机构
[1] Tezpur Univ, Dept Elect & Commun Engn, Sonitpur, Assam, India
来源
PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II | 2019年 / 11942卷
关键词
Remote sensing; Image retrieval; Nonsubsampled shearlet transform; Statistical model; Symmetric normal inverse Gaussian; TEXTURE; CLASSIFICATION;
D O I
10.1007/978-3-030-34872-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a nonsubsampled shearlet transform (NSST) based remote sensing (RS) image retrieval technique where the NSST subband coefficients are modeled with symmetric normal inverse Gaussian (SNIG) distribution. The NSST is popular for its very good directional selectivity and shift invariance. The SNIG is a four parameter distribution which can describe a wide range of heavy tailed distributions. Through Kolmogorov-Smirnov (KS) goodness of fit test, it is shown that the SNIG best approximates the shape of distribution of detail NSST coefficients. For Maximum Likelihood (ML) estimation of SNIG parameters, an Expectation-Maximization (EM) type of algorithm is used. The RS images are first decomposed with NSST and the feature vector is formed with the estimated SNIG parameters from detail NSST coefficients. Here, the UC Merced land use (UCM) and the High-resolution satellite scene (HRS) datasets are used for the experiments conducted. The results of the proposed method reveal superior performance, when compared with some well known techniques.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 23 条
[1]   Remote Sensing Image Retrieval With Global Morphological Texture Descriptors [J].
Aptoula, Erchan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05) :3023-3034
[2]   Evaluation of the effects of Gabor filter parameters on texture classification [J].
Bianconi, Francesco ;
Fernandez, Antonio .
PATTERN RECOGNITION, 2007, 40 (12) :3325-3335
[3]   Theoretical and experimental comparison of different approaches for color texture classification [J].
Bianconi, Francesco ;
Harvey, Richard ;
Southam, Paul ;
Fernandez, Antonio .
JOURNAL OF ELECTRONIC IMAGING, 2011, 20 (04)
[4]   Retrieval of Remote Sensing Images with Pattern Spectra Descriptors [J].
Bosilj, Petra ;
Aptoula, Erchan ;
Lefevre, Sebastien ;
Kijak, Ewa .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (12)
[5]   Sparse directional image representations using the discrete shearlet transform [J].
Easley, Glenn ;
Labate, Demetrio ;
Lim, Wang-Q .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (01) :25-46
[6]   Using BayesShrink, BiShrink, Weighted BayesShrink, and Weighted BiShrink in NSST and SWT for Despeckling SAR Images [J].
Farhangi, Nikou ;
Ghofrani, Sedigheh .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
[7]  
Hanbury A, 2005, COMPUT IMAGING VIS, V30, P377
[8]  
Hazarika D., 2017, THESIS
[9]   SAR Image Despeckling Based on a Mixture of Gaussian Distributions with Local Parameters and Multiscale Edge Detection in Lapped Transform Domain [J].
Hazarika D. ;
Nath V.K. ;
Bhuyan M. .
Sensing and Imaging, 2016, 17 (01)
[10]   An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution [J].
Karlis, D .
STATISTICS & PROBABILITY LETTERS, 2002, 57 (01) :43-52