DECOMPOSITION OF A 3D TRIANGULAR MESH INTO QUADRANGULATED PATCHES

被引:0
作者
Beniere, Roseline [1 ]
Subsol, Gerard [1 ]
Puech, William [1 ]
Gesquiere, Gilles [2 ]
Le Breton, Francois [3 ]
机构
[1] Univ Montpellier 2, CNRS, LIRMM, 161 Rue Ada, F-34392 Montpellier, France
[2] Aix Marseille Univ, CNRS, LSIS, IUT, F-13637 Arles, France
[3] C4W, F-34000 Montpellier, France
来源
GRAPP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS | 2010年
关键词
Remeshing; Quadrangular mesh; Quads quality; Parametrization; SURFACES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present a method to decompose a 3D triangular mesh into a set of quadrangulated patches. This method consists in merging triangles to obtain quads. The quads are then grouped together to compose quadrangulated areas and patches. Unlike many methods of remeshing, this method does not move the vertices of the original triangular mesh. Quadrangulated patches extracted can then be used as a support of a parametric function or of a subdivision scheme.
引用
收藏
页码:96 / 103
页数:8
相关论文
共 50 条
  • [21] Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: IIb. Fission properties of BSkG2
    Ryssens, Wouter
    Scamps, Guillaume
    Goriely, Stephane
    Bender, Michael
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (05)
  • [22] Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: III. From atomic nuclei to neutron stars
    Grams, Guilherme
    Ryssens, Wouter
    Scamps, Guillaume
    Goriely, Stephane
    Chamel, Nicolas
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (11)
  • [23] Vertex-based diffusion for 3-D mesh denoising
    Zhang, Ying
    Ben Hamza, A.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (04) : 1036 - 1045
  • [24] SUBDIVISION-BASED 3D REMESHING WITH A FAST SPHERICAL PARAMETERIZATION METHOD
    Zhang, Ruqin
    Winer, Eliot
    Oliver, James H.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, DETC 2010, VOL 3, A AND B, 2010, : 1039 - +
  • [25] A novel projection of open geometry into rectangular domain for 3D shape parameterization
    Curkovic, Milan
    Marinic-Kragic, Ivo
    Vucina, Damir
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2018, 25 (01) : 1 - 14
  • [26] A Study on the Influence of Wavelet Number Change in the Wavelet Neural Network Architecture for 3D Mesh Deformation Using Trust Region Spherical Parameterization
    Dhibi, Naziha
    Elkefai, Akram
    Ben Amar, Chokri
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 545 - 555
  • [27] Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem
    Wodo, Olga
    Ganapathysubramanian, Baskar
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (15) : 6037 - 6060
  • [28] 3D-TSV: The 3D trajectory-based stress visualizer
    Wang, Junpeng
    Neuhauser, Christoph
    Wu, Jun
    Gao, Xifeng
    Westermann, Ruediger
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2022, 170
  • [29] Practical 3D Frame Field Generation
    Ray, Nicolas
    Sokolov, Dmitry
    Levy, Bruno
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06):
  • [30] Pseudo-Hermitian Geometry in 3D
    Yang, Paul C.
    [J]. GEOMETRIC ANALYSIS, 2020, 2263 : 113 - 144