Differentiable Refraction-Tracing for Mesh Reconstruction of Transparent Objects

被引:30
作者
Lyu, Jiahui [1 ]
Wu, Bojian [2 ]
Lischinski, Dani [3 ]
Cohen-Or, Daniel [1 ]
Huang, Hui [4 ]
机构
[1] Shenzhen Univ, Shenzhen, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
[3] Hebrew Univ Jerusalem, Jerusalem, Israel
[4] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2020年 / 39卷 / 06期
基金
以色列科学基金会;
关键词
3D reconstruction; transparent objects; differentiable rendering;
D O I
10.1145/3414685.3417815
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Capturing the 3D geometry of transparent objects is a challenging task, ill-suited for general-purpose scanning and reconstruction techniques, since these cannot handle specular light transport phenomena. Existing state-of-the-art methods, designed specifically for this task, either involve a complex setup to reconstruct complete refractive ray paths, or leverage a data-driven approach based on synthetic training data. In either case, the reconstructed 3D models suffer from over-smoothing and loss of fine detail. This paper introduces a novel, high precision, 3D acquisition and reconstruction method for solid transparent objects. Using a static background with a coded pattern, we establish a mapping between the camera view rays and locations on the background. Differentiable tracing of refractive ray paths is then used to directly optimize a 3D mesh approximation of the object, while simultaneously ensuring silhouette consistency and smoothness. Extensive experiments and comparisons demonstrate the superior accuracy of our method.
引用
收藏
页数:13
相关论文
共 36 条
  • [1] Dip Transform for 3D Shape Reconstruction
    Aberman, Kfir
    Katzir, Oren
    Zhou, Qiang
    Luo, Zegang
    Sharf, Andrei
    Greif, Chen
    Chen, Baoquan
    Cohen-Or, Daniel
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04):
  • [2] Ben-Ezra M, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P1025
  • [3] Born M., 2013, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, DOI [DOI 10.1017/CBO9781139644181, 10.1017/CBO9781139644181]
  • [4] Chuang YY, 2000, COMP GRAPH, P121, DOI 10.1145/344779.344844
  • [5] Fluorescent immersion range scanning
    Hullin, Matthias B.
    Fuchs, Martin
    Ihrke, Ivo
    Seidel, Hans-Peter
    Lensch, Hendrik P. A.
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [6] Transparent and Specular Object Reconstruction
    Ihrke, Ivo
    Kutulakos, Kiriakos N.
    Lensch, Hendrik P. A.
    Magnor, Marcus
    Heidrich, Wolfgang
    [J]. COMPUTER GRAPHICS FORUM, 2010, 29 (08) : 2400 - 2426
  • [7] Neural 3D Mesh Renderer
    Kato, Hiroharu
    Ushiku, Yoshitaka
    Harada, Tatsuya
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3907 - 3916
  • [8] A theory of refractive and specular 3D shape by light-path triangulation
    Kutulakos, Kiriakos N.
    Steger, Eron
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 76 (01) : 13 - 29
  • [9] Kutulakos Kiriakos N., 2000, INT J COMPUTER VISIO, V38, P3
  • [10] A closed-form solution to natural image matting
    Levin, Anat
    Lischinski, Dani
    Weiss, Yair
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (02) : 228 - 242