GlyNet: a multi-task neural network for predicting protein-glycan interactions

被引:7
作者
Carpenter, Eric J. [1 ]
Seth, Shaurya [1 ]
Yue, Noel [1 ]
Greiner, Russell [2 ,3 ]
Derda, Ratmir [1 ]
机构
[1] Univ Alberta, Dept Chem, Edmonton, AB, Canada
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[3] Alberta Machine Intelligence Inst AMII, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
3D STRUCTURE; MOTIFS; ARRAY; MICROARRAY; PATTERNS; SPECIFICITIES; RECOGNITION; GLYCOMICS; DISCOVERY; DATABASE;
D O I
10.1039/d1sc05681f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advances in diagnostics, therapeutics, vaccines, transfusion, and organ transplantation build on a fundamental understanding of glycan-protein interactions. To aid this, we developed GlyNet, a model that accurately predicts interactions (relative binding strengths) between mammalian glycans and 352 glycan-binding proteins, many at multiple concentrations. For each glycan input, our model produces 1257 outputs, each representing the relative interaction strength between the input glycan and a particular protein sample. GlyNet learns these continuous values using relative fluorescence units (RFUs) measured on 599 glycans in the Consortium for Functional Glycomics glycan arrays and extrapolates these to RFUs from additional, untested glycans. GlyNet's output of continuous values provides more detailed results than the standard binary classification models. After incorporating a simple threshold to transform such continuous outputs the resulting GlyNet classifier outperforms those standard classifiers. GlyNet is the first multi-output regression model for predicting protein-glycan interactions and serves as an important benchmark, facilitating development of quantitative computational glycobiology.
引用
收藏
页码:6669 / 6686
页数:18
相关论文
共 73 条
  • [1] Glycans in immune recognition and response
    Amon, Ron
    Reuven, Eliran Moshe
    Ben-Arye, Shani Leviatan
    Padler-Karavani, Vered
    [J]. CARBOHYDRATE RESEARCH, 2014, 389 : 115 - 122
  • [2] [Anonymous], IMAGENE SOFTW
  • [3] ProfilePSTMM: capturing tree-structure motifs in carbohydrate sugar chains
    Aoki-Kinoshita, Kiyoko F.
    Ueda, Nobuhisa
    Mamitsuka, Hiroshi
    Kanehisa, Minoru
    [J]. BIOINFORMATICS, 2006, 22 (14) : E25 - E34
  • [4] Aoki-Kinoshita Kiyoko F, 2015, Methods Mol Biol, V1273, P193, DOI 10.1007/978-1-4939-2343-4_14
  • [5] Aoki-Kinoshita Kiyoko Flora, 2013, Methods Mol Biol, V939, P87, DOI 10.1007/978-1-62703-107-3_8
  • [6] Leveraging glycomics data in glycoprotein 3D structure validation with Privateer
    Bagdonas, Haroldas
    Ungar, Daniel
    Agirre, Jon
    [J]. BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2020, 16 : 2523 - 2533
  • [7] Chemical glycobiology
    Bertozzi, CR
    Kiessling, LL
    [J]. SCIENCE, 2001, 291 (5512) : 2357 - 2364
  • [8] Printed covalent glycan array for ligand profiling of diverse glycan binding proteins
    Blixt, O
    Head, S
    Mondala, T
    Scanlan, C
    Huflejt, ME
    Alvarez, R
    Bryan, MC
    Fazio, F
    Calarese, D
    Stevens, J
    Razi, N
    Stevens, DJ
    Skehel, JJ
    van Die, I
    Burton, DR
    Wilson, IA
    Cummings, R
    Bovin, N
    Wong, CH
    Paulson, JC
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (49) : 17033 - 17038
  • [9] Bojar D., 2020, BIOINFORMATICS, DOI DOI 10.1101/2020.04.08.031948
  • [10] Bojar D., 2020, Cold Spring Harbor Laboratory, DOI [DOI 10.1101/2020.01.10.902114, 10.1101/2020.01.10.902114]