Towards Ultimate Scaling Limits of Phase-Change Memory

被引:0
作者
Xiong, F. [1 ,2 ]
Yalon, E. [1 ]
Behnam, A. [3 ]
Neuman, C. M. [1 ]
Grosse, K. L. [3 ,4 ]
Deshmukh, S. [1 ]
Pop, E. [1 ,5 ]
机构
[1] Stanford Univ, Elect Engn, Stanford, CA 94305 USA
[2] Univ Pittsburgh, Elect & Comp Engn, Pittsburgh, PA 15261 USA
[3] Univ Illinois, Urbana, IL 61801 USA
[4] Raytheon Space & Airborne Syst, Mckinney, TX 75071 USA
[5] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
来源
2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | 2016年
关键词
TRANSITIONS; RESISTANCE; GRAPHENE; STORAGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data storage based on a reversible material phase transition (e.g. amorphous to crystalline) has been studied for nearly five decades. Yet, it was only during the past five years that some phase-change memory technologies (e.g. GeSbTe) have been approaching the physical scaling limits of the smallest possible memory cell. Here we review recent results from our group and others, which have achieved sub-10 nm scale PCM with switching energy approaching single femtojoules per bit Fundamental limits could be as low as single attojoules per cubic nanometer of the memory material, although approaching such limits in practice appears strongly limited by electrical and thermal parasitics, i.e. contacts and interfaces.
引用
收藏
页数:4
相关论文
共 41 条
  • [1] Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier
    Ahn, Chi-Yui
    Fong, Scott W.
    Kim, Yongsung
    Lee, Seunghyun
    Sood, Aditya
    Neumann, Christopher M.
    Ashegh, Mehdi
    Goodson, Kenneth E.
    Pop, Eric
    Wong, H. -S. Philip
    [J]. NANO LETTERS, 2015, 15 (10) : 6809 - 6814
  • [2] Aly MMS, 2015, COMPUTER, V48, P24, DOI 10.1109/MC.2015.376
  • [3] Nanoscale phase change memory with graphene ribbon electrodes
    Behnam, Ashkan
    Xiong, Feng
    Cappelli, Andrea
    Wang, Ning C.
    Carrion, Enrique A.
    Hong, Sungduk
    Dai, Yuan
    Lyons, Austin S.
    Chow, Edmond K.
    Piccinini, Enrico
    Jacoboni, Carlo
    Pop, Eric
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (12)
  • [4] Boniardi M., 2014, IEDM
  • [5] Bozorg-Grayeli E., 2013, Annu. Rev. Heat Transfer, V16, P397
  • [6] Phase change memory technology
    Burr, Geoffrey W.
    Breitwisch, Matthew J.
    Franceschini, Michele
    Garetto, Davide
    Gopalakrishnan, Kailash
    Jackson, Bryan
    Kurdi, Buelent
    Lam, Chung
    Lastras, Luis A.
    Padilla, Alvaro
    Rajendran, Bipin
    Raoux, Simone
    Shenoy, Rohit S.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (02): : 223 - 262
  • [7] Evidence of the thermo-electric Thomson effect and influence on the program conditions and cell optimization in phase-change memory cells
    Castro, D. Tio
    Goux, L.
    Hurkx, G. A. M.
    Attenborough, K.
    Delhougne, R.
    Lisoni, J.
    Jedema, F. J.
    Zandt, M. A. A. In't
    Wolters, R. A. M.
    Gravesteijn, D. J.
    Verheijen, M. A.
    Kaiser, M.
    Weemaes, R. G. R.
    Wouters, D. J.
    [J]. 2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, : 315 - +
  • [8] Compact Thermal Model for Vertical Nanowire Phase-Change Memory Cells
    Chen, I-Ru
    Pop, Eric
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (07) : 1523 - 1528
  • [9] Structural Phase Transitions by Design in Monolayer Alloys
    Duerloo, Karel-Alexander N.
    Reed, Evan J.
    [J]. ACS NANO, 2016, 10 (01) : 289 - 297
  • [10] Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers
    Duerloo, Karel-Alexander N.
    Li, Yao
    Reed, Evan J.
    [J]. NATURE COMMUNICATIONS, 2014, 5