Numerical simulations for fractional variable-order equations

被引:1
|
作者
Mozyrska, Dorota [1 ]
Oziablo, Piotr [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, Wiejska 45A, Bialystok, Poland
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 04期
关键词
Difference equations; Dynamic systems; Eigenfunction; Fractional variable-order; LINEAR-SYSTEMS;
D O I
10.1016/j.ifacol.2018.06.122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of the paper is to present the method of fitting finding constant A coefficient and a parameter of an order function of the processes described by variable-, fractional-order backward difference of the Griinwald-Letnikov-type. As a qualitative criterion of the estimation the Coefficient of Determination (which we mark as R-2) and the Mean Square Error are used. All the numerical experiments were done with MATLAB. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:853 / 858
页数:6
相关论文
共 50 条
  • [1] A review of numerical solutions of variable-order fractional differential equations
    Sun B.
    Zhang W.-C.
    Li Z.-L.
    Fan K.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (10): : 2433 - 2442
  • [2] Logistic fractional variable-order equation - numerical simulations for fitting parameters
    Mozyrska, Dorota
    Oziablo, Piotr
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 99 - 104
  • [3] The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fractional Derivatives
    Xue, Guangming
    Lin, Funing
    Su, Guangwang
    FRONTIERS IN PHYSICS, 2020, 8
  • [4] Variable-order fractional derivatives and their numerical approximations
    Valerio, Duarte
    da Costa, Jose Sa
    SIGNAL PROCESSING, 2011, 91 (03) : 470 - 483
  • [5] On Numerical Simulations of Variable-Order Fractional Cable Equation Arising in Neuronal Dynamics
    Salama, Fouad Mohammad
    FRACTAL AND FRACTIONAL, 2024, 8 (05)
  • [6] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [7] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Yifei Wang
    Jin Huang
    Hu Li
    Numerical Algorithms, 2024, 95 : 1855 - 1877
  • [8] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Wang, Yifei
    Huang, Jin
    Li, Hu
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1855 - 1877
  • [9] An Efficient Numerical Approach For Solving Linear Variable-order Fractional Differential Equations
    Wang, Lei
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 26 (09): : 1249 - 1254
  • [10] A numerical approach for solving a class of variable-order fractional functional integral equations
    Keshi, Farzad Khane
    Moghaddam, Behrouz Parsa
    Aghili, Arman
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4821 - 4834