Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine Learning Approaches

被引:20
作者
Kotenko, Igor [1 ]
Izrailov, Konstantin [2 ]
Buinevich, Mikhail [3 ]
机构
[1] Russian Acad Sci, St Petersburg Fed Res Ctr, Comp Secur Problems Lab, St Petersburg 199178, Russia
[2] Bonch Bruevich St Petersburg State Univ Telecommu, Dept Secure Commun Syst, St Petersburg 193232, Russia
[3] St Petersburg Univ State Fire Serv EMERCOM, Dept Appl Math & Informat Technol, St Petersburg 196105, Russia
基金
俄罗斯科学基金会;
关键词
IoT systems; cyber security; static analysis; machine learning; analytic model; survey model; formalization; SOFTWARE; CODE; CLASSIFICATION; INTELLIGENCE; INTERNET; THINGS; IDENTIFICATION; BINARIES;
D O I
10.3390/s22041335
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts' work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of "Form and Content" data transformations.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
    Olowononi, Felix O.
    Rawat, Danda B.
    Liu, Chunmei
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (01): : 524 - 552
  • [2] Advancing IoT security: A systematic review of machine learning approaches for the detection of IoT botnets
    Nazir, Ahsan
    He, Jingsha
    Zhu, Nafei
    Wajahat, Ahsan
    Ma, Xiangjun
    Ullah, Faheem
    Qureshi, Sirajuddin
    Pathan, Muhammad Salman
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (10)
  • [3] A Machine Learning Security Framework for Iot Systems
    Bagaa, Miloud
    Taleb, Tarik
    Bernabe, Jorge Bernal
    Skarmeta, Antonio
    IEEE ACCESS, 2020, 8 : 114066 - 114077
  • [4] A Survey on Machine Learning Techniques for Cyber Security in the Last Decade
    Shaukat, Kamran
    Luo, Suhuai
    Varadharajan, Vijay
    Hameed, Ibrahim A.
    Xu, Min
    IEEE ACCESS, 2020, 8 : 222310 - 222354
  • [5] Comparative Analysis of Cyber Security Approaches Using Machine Learning in Industry 4.0
    Cebeloglu, F. Sumeyye
    Karakose, Mehmet
    2020 6TH IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (IEEE ISSE 2020), 2020,
  • [6] IoT Security and Machine Learning
    Almalki, Sarah
    Alsuwat, Hatim
    Alsuwat, Emad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 103 - 114
  • [7] A review on security analysis of cyber physical systems using Machine learning
    Ahmed Jamal A.
    Mustafa Majid A.-A.
    Konev A.
    Kosachenko T.
    Shelupanov A.
    Materials Today: Proceedings, 2023, 80 : 2302 - 2306
  • [8] Survey on applications of deep learning and machine learning techniques for cyber security
    Alghamdi M.I.
    Alghamdi, Mohammed I. (mialmushilah@bu.edu.sa), 2020, International Association of Online Engineering (14): : 210 - 224
  • [9] Machine learning approaches to IoT security: A systematic literature review
    Ahmad, Rasheed
    Alsmadi, Izzat
    INTERNET OF THINGS, 2021, 14
  • [10] Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey
    Dritsas, Elias
    Trigka, Maria
    FUTURE INTERNET, 2024, 16 (09)