ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity

被引:59
作者
Levi, A
Thomas, CE
Newman, M
Reddy, OUK
Zhang, X
Xu, Y
机构
[1] USDA ARS, US Vegetable Lab, Charleston, SC 29414 USA
[2] USDA ARS, Plant Genet Resources & Conservat Unit, Griffin, GA 30223 USA
[3] Alcorn State Univ, Ctr Plant Biotechnol & Genom, Lorman, MS 39096 USA
[4] Syngenta Seeds, Woodland, CA 95695 USA
[5] Natl Engn Res Ctr Vegetables, Beijing 100089, Peoples R China
关键词
RAPD; DNA markers; germplasm evaluation; vegetable breeding; Citrullus lanatus;
D O I
10.21273/JASHS.129.4.0553
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Wide phenotypic diversity exists among American heirloom cultivars of watermelon (Citrullus lanatus var. lanatus). However, in published studies, low or no polymorphism was revealed among those heirlooms using isozyme or randomly amplified polymorphic DNA (RAPD) markers. In this study, experiments with inter-simple sequence repeat (ISSR) [also known as simple sequence repeat-(SSR-) anchored primers] and amplified fragment-length polymorphism (AFLP) markers produced high polymorphisms among watermelon heirloom cultivars. ISSR (111) and AFLP (118) markers (229 total) identified 80.2% to 97.8% genetic similarity among heirloom cultivars. The phylogenetic relations based on ISSR and AFLP markers are highly consistent with the parental records available for some of the heirloom cultivars, providing confidence in the dendogram constructed for heirlooms based on similarity values. As compared with RAPD markers, ISSRs and AFLPs are highly effective in differentiating among watermelon cultivars or elite lines with limited genetic diversity.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 24 条
[11]   Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon [J].
Levi, A ;
Thomas, CE ;
Wehner, TC ;
Zhang, XP .
HORTSCIENCE, 2001, 36 (06) :1096-1101
[12]  
Levi A., 1999, Report - Cucurbit Genetics Cooperative, P41
[13]   ISOZYME AND SEED PROTEIN PHYLOGENY OF THE GENUS CITRULLUS (CUCURBITACEAE) [J].
NAVOT, N ;
ZAMIR, D .
PLANT SYSTEMATICS AND EVOLUTION, 1987, 156 (1-2) :61-67
[14]   MATHEMATICAL-MODEL FOR STUDYING GENETIC-VARIATION IN TERMS OF RESTRICTION ENDONUCLEASES [J].
NEI, M ;
LI, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (10) :5269-5273
[15]   Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers [J].
Paris, HS ;
Yonash, N ;
Portnoy, V ;
Mozees-Daube, N ;
Tzuri, G ;
Katzir, N .
THEORETICAL AND APPLIED GENETICS, 2003, 106 (06) :971-978
[16]   A reference map of Cucumis melo based on two recombinant inbred line populations [J].
Périn, C ;
Hagen, LS ;
De Conto, V ;
Katzir, N ;
Danin-Poleg, Y ;
Portnoy, V ;
Baudracco-Arnas, S ;
Chadoeuf, J ;
Dogimont, C ;
Pitrat, M .
THEORETICAL AND APPLIED GENETICS, 2002, 104 (6-7) :1017-1034
[17]  
Rohlf F.J., 1993, NTSYS PC NUMERICAL T
[18]   ASSESSMENT OF GENOME ORIGINS AND GENETIC DIVERSITY IN THE GENUS ELEUSINE WITH DNA MARKERS [J].
SALIMATH, SS ;
DEOLIVEIRA, AC ;
GODWIN, ID ;
BENNETZEN, JL .
GENOME, 1995, 38 (04) :757-763
[19]  
Sambrook J., 2002, MOL CLONING LAB MANU
[20]   Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):: Frequency, length variation, transposon associations, and genetic marker potential [J].
Temnykh, S ;
DeClerck, G ;
Lukashova, A ;
Lipovich, L ;
Cartinhour, S ;
McCouch, S .
GENOME RESEARCH, 2001, 11 (08) :1441-1452