Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method

被引:8
作者
Deshmukh, P. R. [1 ]
Pusawale, S. N. [1 ]
Shinde, N. M. [1 ]
Lokhande, C. D. [1 ]
机构
[1] Shivaji Univ, Dept Phys, Thin Film Phys Lab, Kolhapur 416004, MS, India
关键词
Thin films; Polyaniline; Supercapacitor; Charge-discharge study; HYDROUS RUTHENIUM OXIDE; ELECTROCHEMICAL SUPERCAPACITORS; DEPOSITED POLYANILINE; REDOX SUPERCAPACITOR; ELECTRODE MATERIAL; THIN-FILMS; PERFORMANCE; BEHAVIOR; ENERGY; COMPOSITES;
D O I
10.3938/jkps.65.80
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the synthesis of polyaniline nanofibers using the successive ionic layer adsorption and reaction (SILAR) method. The structural study shows the amorphous nature of polyaniline. The formation of polyaniline nanofibers has been revealed by scanning electron microscopy (SEM) whereas the confirmation of polyaniline material is obtained from Fourier transform infrared (FT-IR) spectroscopy. A plausible explanation illustrating the growth mechanism is presented. A maximum specific capacitance of 1078 F.g(-1) at a scan rate of 5 mV.s(-1) is obtained. The charge-discharge behavior shows a maximum specific power of 1.2 kW.kg(-1) and specific energy of 64 Wh.kg(-1). The ease of the synthesis and the interesting electrochemical properties indicate that polyaniline nanofibers are promising materials for supercapacitor applications.
引用
收藏
页码:80 / 86
页数:7
相关论文
共 43 条
[1]   Structural and electrical properties of polyaniline/silver nanocomposites [J].
Afzal, Asma B. ;
Akhtar, M. J. ;
Nadeem, M. ;
Ahmad, M. ;
Hassan, M. M. ;
Yasin, T. ;
Mehmood, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (01)
[2]   TiOX-polyanilne Composite Films for High-performance Supercapacitors [J].
Ahn, Jeong Min ;
Inamdar, Akbar I. ;
Jo, Yongcheol ;
Kim, Jongmin ;
Jung, Woong ;
Im, Hyunsik ;
Kim, HyungSang .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (02) :L182-L185
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]  
Baldissera A. F., 2010, MATER CORROS, V9, P790
[5]   Growth of sub-micron fibres of pure polyaniline using the electrospinning technique [J].
Cardenas, J. R. ;
de Franca, M. G. O. ;
de Vasconcelos, E. A. ;
de Azevedo, W. M. ;
da Silva, E. F., Jr. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (04) :1068-1071
[6]   Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries [J].
Chen, Wei-Min ;
Huang, Yun-Hui ;
Yuan, Li-Xia .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 660 (01) :108-113
[7]   Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells [J].
Chen, Zhongwei ;
Xu, Lianbin ;
Li, Wenzhen ;
Waje, Mahesh ;
Yan, Yushan .
NANOTECHNOLOGY, 2006, 17 (20) :5254-5259
[8]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[9]   Supercapacitive performance of hydrous ruthenium oxide (RuO2•nH2O) thin films deposited by SILAR method [J].
Deshmukh, P. R. ;
Pusawale, S. N. ;
Jagadale, A. D. ;
Lokhande, C. D. .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (03) :1546-1553
[10]   Microwave assisted chemical bath deposited polyaniline films for supercapacitor application [J].
Deshmukh, P. R. ;
Pusawale, N. ;
Jamadade, V. S. ;
Patil, U. M. ;
Lokhande, C. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (16) :5064-5069