Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects

被引:4
作者
Rao, B. L. S. Prakasa [1 ]
机构
[1] CR RAO Adv Inst Math Stat & Comp Sci, Hyderabad, India
来源
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY | 2021年 / 83卷 / 02期
关键词
Stochastic differential equation; random effects; nonparametric estimation; Kernel method; mixed fractional Brownian motion; PARAMETRIC-ESTIMATION; CONVERGENCE; UNIQUENESS; EXISTENCE;
D O I
10.1007/s13171-020-00230-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss nonparametric estimation of the density of random effects in models governed by a stochastic differential equation driven by a mixed fractional Brownian motion.
引用
收藏
页码:554 / 568
页数:15
相关论文
共 50 条
[31]   Averaging principle for distribution dependent stochastic differential equations driven by fractional Brownian motion and standard Brownian motion [J].
Shen, Guangjun ;
Xiang, Jie ;
Wu, Jiang-Lun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 321 :381-414
[32]   A Support Theorem for Stochastic Differential Equations Driven by a Fractional Brownian Motion [J].
Xu, Jie ;
Sun, Yanhua ;
Ren, Jie .
JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) :728-761
[33]   Asymptotic inference for stochastic differential equations driven by fractional Brownian motion [J].
Shohei Nakajima ;
Yasutaka Shimizu .
Japanese Journal of Statistics and Data Science, 2023, 6 :431-455
[34]   Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion [J].
Nualart, David ;
Saussereau, Bruno .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) :391-409
[35]   Asymptotic inference for stochastic differential equations driven by fractional Brownian motion [J].
Nakajima, Shohei ;
Shimizu, Yasutaka .
JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (01) :431-455
[36]   Stability result for fractional neutral stochastic differential system driven by mixed fractional Brownian motion [J].
Dhanalakshmi, K. ;
Balasubramaniam, P. .
INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) :497-513
[37]   Instrumental variable estimation for a linear stochastic differential equation driven by a mixed fractional Brownian motion [J].
Rao, B. L. S. Prakasa .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (06) :943-953
[38]   Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators [J].
Tamilalagan, P. ;
Balasubramaniam, P. .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (08) :1713-1727
[39]   Parameter estimation in stochastic differential equation driven by fractional Brownian motion [J].
Filatova, Daria ;
Grzywaczewski, Marek ;
Shybanova, Elizaveta ;
Zili, Mounir .
EUROCON 2007: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOLS 1-6, 2007, :2111-2117
[40]   Uniqueness and explosion time of solutions of stochastic differential equations driven by fractional Brownian motion [J].
Jie Xu ;
Yun Min Zhu ;
Ji Cheng Liu .
Acta Mathematica Sinica, English Series, 2012, 28 :2407-2416