Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects

被引:4
作者
Rao, B. L. S. Prakasa [1 ]
机构
[1] CR RAO Adv Inst Math Stat & Comp Sci, Hyderabad, India
来源
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY | 2021年 / 83卷 / 02期
关键词
Stochastic differential equation; random effects; nonparametric estimation; Kernel method; mixed fractional Brownian motion; PARAMETRIC-ESTIMATION; CONVERGENCE; UNIQUENESS; EXISTENCE;
D O I
10.1007/s13171-020-00230-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss nonparametric estimation of the density of random effects in models governed by a stochastic differential equation driven by a mixed fractional Brownian motion.
引用
收藏
页码:554 / 568
页数:15
相关论文
共 33 条
[1]   Comparison of nonparametric methods in nonlinear mixed effects models [J].
Antic, J. ;
Laffont, C. M. ;
Chafai, D. ;
Concordet, D. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) :642-656
[2]   MIXED GAUSSIAN PROCESSES: A FILTERING APPROACH [J].
Cai, Chunhao ;
Chigansky, Pavel ;
Kleptsyna, Marina .
ANNALS OF PROBABILITY, 2016, 44 (04) :3032-3075
[3]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[4]   STATISTICAL ANALYSIS OF THE MIXED FRACTIONAL ORNSTEIN-UHLENBECK PROCESS [J].
Chigansky, P. ;
Kleptsyna, M. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 63 (03) :408-425
[5]   Mixed Stochastic Differential Equations: Existence and Uniqueness Result [J].
da Silva, Jose Luis ;
Erraoui, Mohamed ;
Essaky, El Hassan .
JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (02) :1119-1141
[6]   Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects [J].
Delattre, Maud ;
Genon-Catalot, Valentine ;
Samson, Adeline .
SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) :322-343
[7]  
Ditlevsen Susanne, 2005, REVSTAT-Stat J, V3, P137
[8]   Non parametric estimation for fractional diffusion processes with random effects [J].
El Omari, Mohamed ;
El Maroufy, Hamid ;
Fuchs, Christiane .
STATISTICS, 2019, 53 (04) :753-769
[9]   Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion [J].
Guerra, Joao ;
Nualart, David .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (05) :1053-1075
[10]  
Loeve M., 2017, PROBABILITY THEORY