In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction

被引:113
|
作者
Kang, Bong Kyun [1 ,2 ]
Im, Seo Young [1 ,2 ]
Lee, Jooyoung [2 ]
Kwag, Sung Hoon [2 ]
Kwon, Seok Bin [2 ]
Tiruneh, SintayehuNibret [2 ]
Kim, Min-Jun [3 ]
Kim, Jung Ho [4 ,5 ]
Yang, Woo Seok [1 ]
Lim, Byungkwon [2 ]
Yoon, Dae Ho [2 ]
机构
[1] Korea Elect Technol Inst, Nano Mat & Components Res Ctr, Seongnam 463816, South Korea
[2] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
[3] IAE, Adv Mat & Proc Ctr, Yongin 17528, South Korea
[4] Univ Wollongong, AIIM, Squires Way, North Wollongong, NSW 2500, Australia
[5] Kyung Hee Univ, Dept Adv Mat Engn Informat & Elect, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
transition-metal nitride; metal organic framework; mesoporous; oxygen evaluation reaction; alkaline water electrolysis; BIFUNCTIONAL ELECTROCATALYSTS; COBALT NITRIDE; HIGHLY EFFICIENT; NANOSHEETS; NITROGEN; REDUCTION; NANOPARTICLES; NANOWIRES; PHOSPHIDE; GRAPHENE;
D O I
10.1007/s12274-019-2399-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The suitable materials, metal nitrides, are a promising class of electrocatalyst materials for a highly efficient oxygen evolution reaction (OER) because they exhibit superior intrinsic conductivity and have higher sustainability than oxide-based materials. To our knowledge, for the first time, we report a designable synthesis of three-dimensional (3D) and mesoporous Co3N@amorphous N-doped carbon (AN-C) nanocubes (NCs) with well-controlled open-framework structures via monodispersed Co-3[Co(CN)(6)](2) Prussian blue analogue (PBA) NC precursors using in situ nitridation and calcination processes. Co3N@AN-C NCs (2 h) demonstrate better OER activity with a remarkably low Tafel plot (69.6 mV.dec(-1)), low overpotential of 280 mV at a current density of 10 mA.cm(-2). Additionally, excellent cycling stability in alkaline electrolytes was exhibited without morphological changes and voltage elevations, superior to most reported hierarchical structures of transition-metal nitride particles. The presented strategy for synergy effects of metal-organic frameworks (MOFs)-derived transition-metal nitrides-carbon hybrid nanostructures provides prospects for developing high-performance and advanced electrocatalyst materials.
引用
收藏
页码:1605 / 1611
页数:7
相关论文
共 50 条
  • [41] In Situ Anchoring of Zeolite Imidazole Framework-Derived Co, N-Doped Porous Carbon on Multiwalled Carbon Nanotubes toward Efficient Electrocatalytic Oxygen Reduction
    Huang, Kexin
    Zhang, Wanqing
    Li, Jia
    Fan, Youjun
    Yang, Bo
    Rong, Chuyan
    Qi, Jiuhui
    Chen, Wei
    Yang, Jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (01): : 478 - +
  • [42] Chitosan Waste-Derived Co and N Co-doped Carbon Electrocatalyst for Efficient Oxygen Reduction Reaction
    Xie, Shilei
    Huang, Senchuan
    Wei, Wenjie
    Yang, Xinzhe
    Liu, Yi
    Lu, Xihong
    Tong, Yexiang
    CHEMELECTROCHEM, 2015, 2 (11): : 1806 - 1812
  • [43] (Fe, Ni, Co)9S8@CS catalyst decorated on N-doped carbon as an efficient electrocatalyst for oxygen evolution reaction
    Kim, Youngkwang
    Karuppannan, Mohanraju
    Lee, Dohyeon
    Bae, Hyo Eun
    Luong, Quang Thien
    Kang, Sun Young
    Sung, Yung-Eun
    Cho, Yong-Hun
    Kwon, Oh Joong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (03) : 3145 - 3154
  • [44] Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts
    Lu, Hai-Sheng
    Zhang, Haimin
    Liu, Rongrong
    Zhang, Xian
    Zhao, Huijun
    Wang, Guozhong
    APPLIED SURFACE SCIENCE, 2017, 392 : 402 - 409
  • [45] Mesoporous waffle-like N-doped carbon with embedded Co nanoparticles for efficiently electrocatalytic oxygen reduction and evolution
    Shen, Manrong
    Lin, Xiufang
    Xi, Wenhao
    Yin, Xiaojin
    Gao, Bifen
    He, Liwen
    Zheng, Yun
    Lin, Bizhou
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 633 : 374 - 382
  • [46] 3D flower-like polypyrrole-derived N-doped porous carbon coupled cobalt oxide as efficient oxygen evolution electrocatalyst
    Farid, Sumbal
    Ren, Suzhen
    Tian, Dongxu
    Qiu, Weiwei
    Zhao, Jialin
    Zhao, Lianlian
    Mao, Qing
    Hao, Ce
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31926 - 31941
  • [47] Ultra-small Co/CoOx nanoparticles dispersed on N-doped carbon nanosheets for highly efficient electrocatalytic oxygen evolution reaction
    Chen Chen
    Zhuojun Yang
    Wei Liang
    Hao Yan
    Yongxiao Tuo
    Yanpeng Li
    Yan Zhou
    Jun Zhang
    Journal of Energy Chemistry , 2021, (04) : 345 - 354
  • [48] In situ construction of Co/Co3O4 with N-doped porous carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
    Peng, Huifen
    Zhang, Wulin
    Song, Yan
    Yin, Fuxing
    Zhang, Chengwei
    Zhang, Lei
    CATALYSIS TODAY, 2020, 355 : 286 - 294
  • [49] Hollow Co3O4 nanocapsules/N-doped carbon with oxygen vacancies as efficient electrocatalysts towards oxygen evolution reaction
    Wang, Baoli
    Luo, Shuchang
    Ai, Yijing
    Yao, Yucen
    Zhang, Siyue
    Huang, Yuhao
    Zhang, Xiaoping
    Sun, Wei
    DIAMOND AND RELATED MATERIALS, 2023, 136
  • [50] MOFs derived FeNi3 nanoparticles decorated hollow N-doped carbon rod for high-performance oxygen evolution reaction
    Liu, Gaopeng
    Wang, Bin
    Wang, Lin
    Wei, Wenxian
    Quan, Yu
    Wang, Chongtai
    Zhu, Wenshuai
    Li, Huaming
    Xia, Jiexiang
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (03) : 423 - 431