New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi

被引:73
作者
Vyas, Valmik K. [1 ]
Bushkin, G. Guy [1 ]
Bernstein, Douglas A. [1 ,3 ]
Getz, Matthew A. [1 ,2 ,4 ]
Sewastianik, Magdalena [1 ]
Barrasa, M. Inmaculada [1 ]
Bartel, David P. [1 ,2 ,4 ]
Fink, Gerald R. [1 ,2 ]
机构
[1] Whitehead Inst Biomed Res, 9 Cambridge Ctr, Cambridge, MA 02142 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] Ball State Univ, Dept Biol, Muncie, IN 47306 USA
[4] Howard Hughes Med Inst, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
CRISPR; Candida; Naumovozyma; Saccharomyces; albicans; castellii; cerevisiae; glabrata; SACCHAROMYCES-CEREVISIAE; GENOME; SYSTEMS; YEAST; CAS9; RNA; RECOMBINATION; CHROMOSOMES; DROSOPHILA; BIOLOGY;
D O I
10.1128/mSphere.00154-18
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We have created new vectors for clustered regularly interspaced short palindromic repeat (CRISPR) mutagenesis in Candida albicans, Saccharomyces cerevisiae, Candida glabrata, and Naumovozyma castellii. These new vectors permit a comparison of the requirements for CRISPR mutagenesis in each of these species and reveal different dependencies for repair of the Cas9 double-stranded break. Both C. albicans and S. cerevisiae rely heavily on homology-directed repair, whereas C. glabrata and N. castellii use both homology-directed and nonhomologous end-joining pathways. The high efficiency of these vectors permits the creation of unmarked deletions in each of these species and the recycling of the dominant selection marker for serial mutagenesis in prototrophs. A further refinement, represented by the "Unified" Solo vectors, incorporates Cas9, guide RNA, and repair template into a single vector, thus enabling the creation of vector libraries for pooled screens. To facilitate the design of such libraries, we have identified guide sequences for each of these species with updated guide selection algorithms. IMPORTANCE CRISPR-mediated genome engineering technologies have revolutionized genetic studies in a wide range of organisms. Here we describe new vectors and guide sequences for CRISPR mutagenesis in the important human fungal pathogens C. albicans and C. glabrata, as well as in the related yeasts S. cerevisiae and N. castellii. The design of these vectors enables efficient serial mutagenesis in each of these species by leaving few, if any, exogenous sequences in the genome. In addition, we describe strategies for the creation of unmarked deletions in each of these species and vector designs that permit the creation of vector libraries for pooled screens. These tools and strategies promise to advance genetic engineering of these medically and industrially important species.
引用
收藏
页数:14
相关论文
共 32 条
[1]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[2]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[3]   Safeguarding CRISPR-Cas9 gene drives in yeast [J].
DiCarlo, James E. ;
Chavez, Alejandro ;
Dietz, Sven L. ;
Esvelt, Kevin M. ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2015, 33 (12) :1250-+
[4]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[5]   Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 [J].
Doench, John G. ;
Fusi, Nicolo ;
Sullender, Meagan ;
Hegde, Mudra ;
Vaimberg, Emma W. ;
Donovan, Katherine F. ;
Smith, Ian ;
Tothova, Zuzana ;
Wilen, Craig ;
Orchard, Robert ;
Virgin, Herbert W. ;
Listgarten, Jennifer ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2016, 34 (02) :184-+
[6]   The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now [J].
Engel, Stacia R. ;
Dietrich, Fred S. ;
Fisk, Dianna G. ;
Binkley, Gail ;
Balakrishnan, Rama ;
Costanzo, Maria C. ;
Dwight, Selina S. ;
Hitz, Benjamin C. ;
Karra, Kalpana ;
Nash, Robert S. ;
Weng, Shuai ;
Wong, Edith D. ;
Lloyd, Paul ;
Skrzypek, Marek S. ;
Miyasato, Stuart R. ;
Simison, Matt ;
Cherry, J. Michael .
G3-GENES GENOMES GENETICS, 2014, 4 (03) :389-398
[7]   Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system [J].
Enkler, Ludovic ;
Richer, Delphine ;
Marchand, Anthony L. ;
Ferrandon, Dominique ;
Jossinet, Fabrice .
SCIENTIFIC REPORTS, 2016, 6
[8]  
Feri A, 2016, MBIO, V7, DOI [10.1128/mBio.01109-16, 10.1128/mbio.01109-16]
[9]   Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans [J].
Gerami-Nejad, Maryam ;
Zacchi, Lucia F. ;
McClellan, Mark ;
Matter, Kathleen ;
Berman, Judith .
MICROBIOLOGY-SGM, 2013, 159 :565-579
[10]   High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method [J].
Gietz R.D. ;
Schiestl R.H. .
Nature Protocols, 2007, 2 (1) :31-34