Tapping mode imaging and measurements with an inverted atomic force microscope

被引:2
作者
Chan, Sandra S. F. [1 ]
Green, John-Bruce D. [1 ]
机构
[1] Univ Alberta, Dept Chem, Edmonton, AB T6G 2G2, Canada
关键词
D O I
10.1021/la060002i
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.
引用
收藏
页码:6701 / 6706
页数:6
相关论文
共 43 条
[1]   Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation [J].
Anczykowski, B ;
Kruger, D ;
Babcock, KL ;
Fuchs, H .
ULTRAMICROSCOPY, 1996, 66 (3-4) :251-259
[2]   A COMPARISON OF SQUEEZE-FILM THEORY WITH MEASUREMENTS ON A MICROSTRUCTURE [J].
ANDREWS, M ;
HARRIS, I ;
TURNER, G .
SENSORS AND ACTUATORS A-PHYSICAL, 1993, 36 (01) :79-87
[3]  
BHUSHAN B, 2004, APPL SCANNING PROBES
[4]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[5]   ON ISOTHERMAL SQUEEZE FILMS [J].
BLECH, JJ .
JOURNAL OF LUBRICATION TECHNOLOGY-TRANSACTIONS OF THE ASME, 1983, 105 (04) :615-620
[6]   On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy [J].
Brandsch, R ;
Bar, G ;
Whangbo, MH .
LANGMUIR, 1997, 13 (24) :6349-6353
[7]   Energy dissipation in tapping-mode atomic force microscopy [J].
Cleveland, JP ;
Anczykowski, B ;
Schmid, AE ;
Elings, VB .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2613-2615
[8]  
COLTON RJ, 1999, PROCEDURES SCANNING
[9]   DIRECT MEASUREMENT OF COLLOIDAL FORCES USING AN ATOMIC FORCE MICROSCOPE [J].
DUCKER, WA ;
SENDEN, TJ ;
PASHLEY, RM .
NATURE, 1991, 353 (6341) :239-241
[10]  
DURIG U, 1988, J MICROSC-OXFORD, V152, P259, DOI 10.1111/j.1365-2818.1988.tb01387.x