OSCILLATION FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAYOSCILLATION FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAY

被引:0
作者
Baculikova, Blanka [1 ]
机构
[1] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Math, Letna 9, Kosice 04200, Slovakia
关键词
Second order differential equation; delay argument; oscillation; monotonic properties;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establishing monotonic properties of non-oscillatory solutions, and oscillation criteria for the second-order delay differential equation y"(t)+p(t)y(tau(t)) = 0. The criteria obtained fulfil the gap in the oscillation theory and essentially improves the earlier ones. The progress is illustrated via Euler's differential equation. Moreover, we provide upper and lower bounds for the non-oscillatory solutions.
引用
收藏
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2012, NONOSCILLATION THEOR, DOI DOI 10.1007/978-1-4614-3455-9
[2]  
[Anonymous], J MATH PURES APPL J
[3]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[4]  
Baculikova B., 1978, J MATH APPL, V63, P54
[5]  
Brands J.J.A.M., 2012, NONLINEAR OSCIL, V15, P13
[6]  
Dzurina J., 2007, ACTA ELECTROTECHNICA, V7, P26
[7]  
Jadlovska Irena., 2014, Acta Electrotech. Inform, V14, P9, DOI [DOI 10.15546/aeei-2014-0002, 10.15546/aeei-2014-0002, DOI 10.15546/AEEI-2014-0002]
[8]  
Kiguradze I.T., 1964, MAT SBORNIK, V65, P172
[9]  
Kiguradze I.T., 1993, ASYMPTOTIC PROPERTIE
[10]  
Kneser A., 1893, Math. Ann, V42, P409, DOI [10.1007/BF01444165, DOI 10.1007/BF01444165]