Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images

被引:6
|
作者
Bendaoudi, Hamza [1 ]
Cheriet, Farida [1 ]
Manraj, Ashley [1 ]
Ben Tahar, Houssem [2 ]
Langlois, J. M. Pierre [1 ]
机构
[1] Polytech Montreal, Dept Comp & Software Engn, Montreal, PQ, Canada
[2] Diagnos Inc, Brossard, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Retinal blood vessels segmentation; Hardware acceleration; Scalable hardware architectures; ASIPs; MATCHED-FILTER; EXTRACTION;
D O I
10.1007/s11554-016-0661-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Blood vessel segmentation from high-resolution fundus images is a necessary step in several retinal pathologies detection. Automatic blood vessel segmentation is a computing-intensive task, which raises the need for acceleration with hardware architectures. In this paper, we propose two architectures for blood vessel segmentation using a matched filter (MF). The first architecture is a scalable hardware architecture, while the second one is an application-specific instruction-set processor. An efficient, real-time hardware implementation of the algorithm is made possible through parallel processing and efficient resource sharing. A tool for the automatic generation of particularized HDL descriptions of the architecture is proposed. The tool starts from a common architecture template and takes as input the parameters of the MF. A designer thus gains a significant amount of flexibility and productivity with the parameter selection problem and the evaluation of corresponding implementations. Several designs were verified and implemented on an FPGA platform. Performance in terms of area utilization and maximum frequency are reported. The results show significant improvement over state-of-the-art implementations, by up to a factor of 14x for high-resolution fundus images. The second architecture is based on the Tensilica Xtensa LX processor. With only two additional custom instructions requiring an additional 4x the area of the basic processor, the ASIP achieves a significant speedup of 7.76x when compared to the basic processor, while retaining all its flexibility.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 50 条
  • [21] Retinal Blood Vessel Classification Based on Color and Directional Features in Fundus Images
    Hamednejad, Golnoush
    Pourghassem, Hossein
    2015 22ND IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2015, : 257 - 262
  • [22] Segmentation of Blood Vessels from Fundus Retinal Images by Using Gabor Transformation
    Krestanova, Alice
    Kubicek, Jan
    Kosturikova, Jana
    XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019, 2020, 76 : 1609 - 1619
  • [23] Performance evaluation of shallow and deep CNN architectures on building segmentation from high-resolution images
    Sariturk, Batuhan
    Seker, Dursun Zafer
    Ozturk, Ozan
    Bayram, Bulent
    EARTH SCIENCE INFORMATICS, 2022, 15 (03) : 1801 - 1823
  • [24] Automated techniques for blood vessels segmentation through fundus retinal images: A review
    Akbar, Shahzad
    Sharif, Muhammad
    Akram, Muhammad Usman
    Saba, Tanzila
    Mahmood, Toqeer
    Kolivand, Mahyar
    MICROSCOPY RESEARCH AND TECHNIQUE, 2019, 82 (02) : 153 - 170
  • [25] Blood Vessel Segmentation in Retinal Images Based on the Nonsubsampled Contourlet Transform
    Lee, Chien-Cheng
    Ku, Shih-Che
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND INTELLIGENT CONTROL (ISIC 2012), 2012, : 337 - 340
  • [26] Blood Vessel Segmentation In Retinal Images Using Echo State Networks
    Souahlia, Abdelkerim
    Belatreche, Ammar
    Benyettou, Abdelkader
    Curran, Kevin
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2017, : 91 - 98
  • [27] Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier
    Memari, Nogol
    Ramli, Abd Rahman
    Bin Saripan, M. Iqbal
    Mashohor, Syamsiah
    Moghbel, Mehrdad
    PLOS ONE, 2017, 12 (12):
  • [28] Precise Segmentation of the Optic Disc in Retinal Fundus Images
    Fraga, A.
    Barreira, N.
    Ortega, M.
    Penedo, M. G.
    Carreira, M. J.
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 584 - 591
  • [29] Learning Fully-Connected CRFs for Blood Vessel Segmentation in Retinal Images
    Orlando, Jose Ignacio
    Blaschko, Matthew
    Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014, Pt I, 2014, 8673 : 634 - 641
  • [30] Impact of Retinal Vessel Image Coherence on Retinal Blood Vessel Segmentation
    Alqahtani, Saeed S.
    Soomro, Toufique A.
    Jandan, Nisar Ahmed
    Ali, Ahmed
    Irfan, Muhammad
    Rahman, Saifur
    Aldhabaan, Waleed A.
    Khairallah, Abdulrahman Samir
    Abuallut, Ismail
    ELECTRONICS, 2023, 12 (02)