STRONG CONVERGENCE THEOREMS FOR SEMIGROUPS OF NOT NECESSARILY CONTINUOUS MAPPINGS IN BANACH SPACES

被引:0
作者
Takahashi, Wataru [1 ,2 ,3 ]
机构
[1] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
[2] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
关键词
Attractive point; Banach space; fixed point; generalized nonspreading mapping; invariant mean; strong converegence; nonexpansive semigroup; strongly asymptotically invariant net; FIXED-POINT THEOREMS; GENERALIZED HYBRID MAPPINGS; MAXIMAL MONOTONE-OPERATORS; NONLINEAR ERGODIC-THEOREMS; PROXIMAL-TYPE ALGORITHM; NONEXPANSIVE-MAPPINGS; ATTRACTIVE POINT; NONSPREADING MAPPINGS; WEAK; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using a class of semigroups of not necessarily continuous mappings in a Banach space which includes discrete semigroups of generalized nonspreading mappings and semigroups of phi-nonexpansive mappings, we establish a strong convergence theorem of Halpern's type iteration for the semigroups of mappings in a Banach space. Using the result, we obtain well-known and new theorems which are connected with strong convergence results in Hilbert spaces and Banach spaces. It seems that such a strong convergence theorem is first for classes of semigroups of not necessarily continuous mappings in a Banach space.
引用
收藏
页码:603 / 623
页数:21
相关论文
共 43 条
  • [1] Alber Y. I., 1996, THEORY APPL NONLINEA, V178, P15
  • [2] Alsulami SM, 2015, J CONVEX ANAL, V22, P81
  • [3] Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space
    Aoyama, Koji
    Kimura, Yasunori
    Takahashi, Wataru
    Toyoda, Masashi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) : 2350 - 2360
  • [4] Aoyama K, 2010, J NONLINEAR CONVEX A, V11, P335
  • [5] Atsushiba S., 1997, ANN U MARIA CURIE, V51, P1
  • [6] Atsushiba S, 2013, J NONLINEAR CONVEX A, V14, P209
  • [7] Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
  • [8] BAILLON JB, 1975, CR ACAD SCI A MATH, V280, P1511
  • [9] Browder F. E., 1976, P S PURE MATH, V100
  • [10] Day M. M., 1957, ILLINOIS J MATH, V1, P509