Computing point estimates from a non-Gaussian posterior distribution using a probabilistic k-means clustering approach

被引:5
作者
Bavdekar, Vinay A. [1 ]
Shah, Sirish L. [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nonlinear Bayesian state estimation; K-means clustering; Ensemble Kalman filter; Particle filter; FAULT-DETECTION; STATE ESTIMATION;
D O I
10.1016/j.jprocont.2013.11.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Kalman filter algorithm gives an analytical expression for the point estimates of the state estimates, which is the mean of their posterior distribution. Conventional Bayesian state estimators have been developed under the assumption that the mean of the posterior of the states is the 'best estimate'. While this may hold true in cases where the posterior can be adequately approximated as a Gaussian distribution, in general it may not hold true when the posterior is non-Gaussian. The posterior distribution, however, contains far more information about the states, regardless of its Gaussian or non-Gaussian nature. In this study, the information contained in the posterior distribution is explored and extracted to come up with meaningful estimates of the states. The need for combining Bayesian state estimation with extracting information from the distribution is demonstrated in this work. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:487 / 497
页数:11
相关论文
共 31 条
[1]   Fault detection and isolation in stochastic non-linear state-space models using particle filters [J].
Alrowaie, F. ;
Gopaluni, R. B. ;
Kwok, K. E. .
CONTROL ENGINEERING PRACTICE, 2012, 20 (10) :1016-1032
[2]  
[Anonymous], 2003, TECHNICAL REPORT
[3]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[4]   Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J].
Chiang, LH ;
Russell, EL ;
Braatz, RD .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) :243-252
[5]   A possibilistic clustering approach to novel fault detection and isolation [J].
Detroja, K. P. ;
Gudi, R. D. ;
Patwardhan, S. C. .
JOURNAL OF PROCESS CONTROL, 2006, 16 (10) :1055-1073
[6]  
Ding C., 2002, Principles of Data Mining and Knowledge Discovery. 6th European Conference, PKDD 2002. Proceedings (Lecture Notes in Artificial Intelligence Vol.2431), P112
[7]   Particle filtering [J].
Djuric, PM ;
Kotecha, JH ;
Zhang, JQ ;
Huang, YF ;
Ghirmai, T ;
Bugallo, MF ;
Míguez, J .
IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (05) :19-38
[8]   Nonlinear inferential control for process applications [J].
Doyle, FJ .
JOURNAL OF PROCESS CONTROL, 1998, 8 (5-6) :339-353
[9]  
Driessen Hans, 2008, IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications, P39, DOI 10.1049/ic:20080055
[10]  
Evensen G., 2007, DATA ASSIMILIATION E