Blind carrier recovery for circular QAM using nonlinear least-squares estimation

被引:1
|
作者
Duryea, Timothy [1 ]
Sari, Ilkay [1 ]
Serpedin, Erchin [1 ]
机构
[1] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
carrier synchronization; circular QAM; frequency offset; carrier phase; nonlinear least-squares estimator; blind synchronization;
D O I
10.1016/j.dsp.2006.03.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a family of blind feedforward nonlinear least-squares (NLS) estimators for joint estimation of the carrier phase and frequency offset of circular quadrature amplitude modulated (QAM) transmissions is introduced. Well-known synchronization techniques are adapted for the circular QAM schemes, and a constellation-dependent optimal matched nonlinear estimator is derived to minimize the asymptotic variance. A computationally efficient approximation to the optimal nonlinearity is introduced and its performance assessed. Finally, computer simulations for various circular QAM transmissions are carried out to show that the proposed estimation technique is competitive with conventional monomial estimators. From the simulation results, conclusions are drawn about selecting the best synchronization method for implementation in actual communication systems. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 50 条
  • [1] Optimal blind nonlinear least-squares carrier phase and frequency offset estimation for circular QAM
    Duryea, Timothy
    Serpedin, Erchin
    3rd International Conference on Computing, Communications and Control Technologies, Vol 2, Proceedings, 2005, : 100 - 105
  • [2] Optimal blind nonlinear least-squares carrier phase and frequency offset estimation for burst QAM modulations
    Wang, Y
    Serpedin, E
    Ciblat, P
    CONFERENCE RECORD OF THE THIRTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2001, : 1499 - 1503
  • [3] Optimal blind nonlinear least-squares, carrier phase and frequency offset estimation for general QAM modulations
    Wang, Y
    Serpedin, E
    Ciblat, P
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2003, 2 (05) : 1040 - 1054
  • [4] Nonlinear least-squares estimation
    Pollard, D
    Radchenko, P
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (02) : 548 - 562
  • [5] NONLINEAR LEAST-SQUARES ESTIMATION
    HARTLEY, HO
    BOOKER, A
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02): : 638 - 650
  • [6] ESTIMATION OF SCATTERER SPACING USING NONLINEAR LEAST-SQUARES TECHNIQUE
    TARTONO, S
    BILGUTAY, NM
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1985, 32 (01): : 94 - 94
  • [7] LEAST-SQUARES ESTIMATION FOR A CLASS OF NONLINEAR MODELS
    GUTTMAN, I
    PEREYRA, V
    SCOLNIK, HD
    TECHNOMETRICS, 1973, 15 (02) : 209 - 218
  • [8] AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS
    MARQUARDT, DW
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02): : 431 - 441
  • [9] Blind minimax estimators: Improving on least-squares estimation
    Ben-Haim, Zvika
    Eldar, Yonina C.
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 502 - 507
  • [10] Linear Model Estimation of Nonlinear Systems Using Least-Squares Algorithm
    Rahrooh, Alireza
    Buchanan, Walter W.
    Seker, Remzi
    2013 ASEE ANNUAL CONFERENCE, 2013,