Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon

被引:88
作者
Dolores-Calzadilla, V. [1 ,4 ]
Romeira, B. [2 ]
Pagliano, F. [2 ]
Birindelli, S. [2 ]
Higuera-Rodriguez, A. [1 ]
van Veldhoven, P. J. [3 ]
Smit, M. K. [1 ]
Fiore, A. [2 ]
Heiss, D. [1 ,5 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Photon Integrat, Postbus 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, Photon & Semicond Nanophys, Postbus 513, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, NanoLab TU E, Postbus 513, NL-5600 MB Eindhoven, Netherlands
[4] Fraunhofer Heinrich Hertz Inst, Einsteinufer 37, D-10587 Berlin, Germany
[5] Infineon Technol, D-93049 Regensburg, Germany
关键词
CHIP OPTICAL INTERCONNECTS; ROOM-TEMPERATURE; LASERS; MODULATION; NANOLASERS; PHOTONICS; MEMBRANE; LIFETIME;
D O I
10.1038/ncomms14323
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanoscale light sources using metal cavities have been proposed to enable high integration density, efficient operation at low energy per bit and ultra-fast modulation, which would make them attractive for future low-power optical interconnects. For this application, such devices are required to be efficient, waveguide-coupled and integrated on a silicon substrate. We demonstrate a metal-cavity light-emitting diode coupled to a waveguide on silicon. The cavity consists of a metal-coated III-V semiconductor nanopillar which funnels a large fraction of spontaneous emission into the fundamental mode of an InP waveguide bonded to a silicon wafer showing full compatibility with membrane-on-Si photonic integration platforms. The device was characterized through a grating coupler and shows on-chip external quantum efficiency in the 10(-4)-10(-2) range at tens of microamp current injection levels, which greatly exceeds the performance of any waveguide-coupled nanoscale light source integrated on silicon in this current range. Furthermore, direct modulation experiments reveal sub-nanosecond electro-optical response with the potential for multi gigabit per second modulation speeds.
引用
收藏
页数:8
相关论文
共 43 条
[1]  
Agrawal G.P., 2002, Fiber-Optic Communication Systems
[2]  
[Anonymous], 2015, P IEEE INT ULTR S IU
[3]  
[Anonymous], ADV PHOTONICS 2016
[4]   Pure emitter dephasing: A resource for advanced solid-state single-photon sources [J].
Auffeves, Alexia ;
Gerard, Jean-Michel ;
Poizat, Jean-Philippe .
PHYSICAL REVIEW A, 2009, 79 (05)
[5]   Direct modulation of electroluminescence from silicon nanocrystals beyond radiative recombination rates [J].
Carreras, Josep ;
Arbiol, J. ;
Garrido, B. ;
Bonafos, C. ;
Montserrat, J. .
APPLIED PHYSICS LETTERS, 2008, 92 (09)
[6]  
Crosnier G, 2014, P 26 INT C IND PHOSP, P1
[7]   Dynamic control of light emission faster than the lifetime limit using VO2 phase-change [J].
Cueff, Sebastien ;
Li, Dongfang ;
Zhou, You ;
Wong, Franklin J. ;
Kurvits, Jonathan A. ;
Ramanathan, Shriram ;
Zia, Rashid .
NATURE COMMUNICATIONS, 2015, 6
[8]   Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers [J].
Ding, K. ;
Ning, C. Z. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (12)
[9]   Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature [J].
Ding, K. ;
Hill, M. T. ;
Liu, Z. C. ;
Yin, L. J. ;
van Veldhoven, P. J. ;
Ning, C. Z. .
OPTICS EXPRESS, 2013, 21 (04) :4728-4733
[10]   Metallic subwavelength-cavity semiconductor nanolasers [J].
Ding, K. ;
Ning, C. Z. .
LIGHT-SCIENCE & APPLICATIONS, 2012, 1 :e20-e20