Split-field PML implementations for the unconditionally stable LOD-FDTD method

被引:56
作者
do Nascimento, Valtemir E. [1 ]
Borges, Ben-Hur V.
Teixeira, Fernando L.
机构
[1] Univ Sao Paulo, Dept Elect Engn, Sao Carlos Sch Engn, BR-13566590 Sao Carlos, SP, Brazil
[2] Ohio State Univ, Electrosci Lab, Columbus, OH 43212 USA
[3] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43212 USA
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
alternating direction implicit (ADI) technique; finite-difference time-domain (FDTD) method; locally one-dimensional (LOD) technique; perfectly matched layer (PML);
D O I
10.1109/LMWC.2006.877132
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce and compare two split-field implementations of the perfectly matched layer (PML) for the unconditionally stable locally one-dimensional (LOD) finite-difference time-domain (FDTD) method. The LOD-FDTD formalism is expanded in terms of a symmetric source implementation. It is verified that the relative performance of both PML implementations is superior to the split PML performance in the alternating direction implicit (ADI) FDTD method.
引用
收藏
页码:398 / 400
页数:3
相关论文
共 13 条
[1]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[2]   Improved accuracy for locally one-dimensional methods for parabolic equations [J].
Douglas, J ;
Kim, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (09) :1563-1579
[3]  
GONZALEZGARCIA S, 2002, IEEE ANTENN WIREL PR, V1, P31
[4]   A split step approach for the 3-D Maxwell's equations [J].
Lee, JW ;
Fornberg, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (02) :485-505
[5]   Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method [J].
Liu, G ;
Gedney, SD .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (07) :261-263
[6]   A new FDTD algorithm based on alternating-direction implicit method [J].
Namiki, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (10) :2003-2007
[7]  
Nascimento V.E., 2005, PROC 22 SIMP BRASILE, P288
[8]  
SHIBAYAMA J, 2005, ELECT LETT, V41
[9]  
Taflove A., 1995, Computational Electrodynamics: the Finite-Difference Time-Domain Method
[10]   A general approach to extend Berenger's absorbing boundary condition to anisotropic and dispersive media [J].
Teixeira, FL ;
Chew, WC .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1998, 46 (09) :1386-1387