Hereditary properties of spectral isometries

被引:21
作者
Mathieu, M [1 ]
Sourour, AR
机构
[1] Queens Univ Belfast, Dept Pure Math, Belfast BT7 1NN, Antrim, North Ireland
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s00013-003-0595-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a unital surjective spectral isometry between von Neumann algebras one of which is of type I is a Jordan isomorphism. This is based on a study of some hereditary properties of spectral isometries.
引用
收藏
页码:222 / 229
页数:8
相关论文
共 18 条
[1]  
[Anonymous], J FUNCT ANAL
[2]   Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras [J].
Aupetit, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :917-924
[3]   SPECTRAL CHARACTERIZATION OF THE RADICAL IN BANACH AND JORDAN-BANACH ALGEBRAS [J].
AUPETIT, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 114 :31-35
[4]  
BOTTA P, 1984, PAC J MATH, V104, P39
[5]   Linear maps preserving the spectral radius [J].
Bresar, M ;
Semrl, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 142 (02) :360-368
[6]   The spectrally bounded linear maps on operator algebras [J].
Cui, J ;
Hou, J .
STUDIA MATHEMATICA, 2002, 150 (03) :261-271
[7]  
Fack T., 1980, Ann. Inst. Fourier, V30, P49, DOI [10.5802/aif.792, DOI 10.5802/AIF.792]
[8]  
HALPERN H, 1969, T AM MATH SOC, V140, P195, DOI 10.2307/1995133
[9]   SPECTRUM-PRESERVING LINEAR-MAPS [J].
JAFARIAN, AA ;
SOUROUR, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 66 (02) :255-261